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Abstract

Trypanosomatid parasites are causative agents of important human and animal diseases

such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their

mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixe-

nous trypanosomatids since they infect two different hosts, in contrast to those that infect

just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous

trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid

interaction systems are rarely reported and under-studied–despite being common in nature.

Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum

and discuss its transcriptome during in vitro culture and during infection of its natural insect

host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of

human parasite Leishmania major. We also found strong similarities between the H. mus-

carum transcriptome during fruit fly infection, and those of Leishmania during sand fly infec-

tions. Overall this suggests Drosophila-Herpetomonas is a suitable model for less

accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania.

Author summary

Trypanosomes and Leishmania are parasites that cause serious Neglected Tropical Dis-

eases (NTDs) in the world’s poorest people. Both of these are dixenous trypanosomatids,

transmitted to humans and other mammals by biting flies. They are called dixenous as

they can establish infections in two different types of hosts– insect vectors and mammals.

In contrast, monoxenous trypanosomatids usually only infect insects. Despite establish-

ment in the insect’s midgut being key to transmission of NTDs, events during early estab-

lishment inside the insect are still unclear in both dixenous and monoxenous parasites.

Here, we study the interaction between a model insect–the fruit fly Drosophila melanoga-
ster–and its natural monoxenous trypanosomatid parasite Herpetomonas muscarum. We

show that both the genome of this parasite, and gene regulation at early stages of infection
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have strong parallels with Leishmania. This work has begun to identify evolutionarily con-

served aspects of the process by which trypanosomatids establish in insects, thus poten-

tially highlighting key checkpoints necessary for transmission of dixenous parasites. In

turn, this might inform new strategies to control trypanosomatid NTDs.

Introduction

The family Trypanosomatidae belong to the order Kinetoplastida, a group characterized by the

presence a mitochondrial organelle rich in DNA (kDNA) called the kinetoplast. This family

includes parasitic flagellates that undergo cyclical development in both vertebrate and inverte-

brate hosts (and are therefore dixenous). These parasites are best known as agents of important

diseases in humans, domestic animals and plants. However, several genera of this order such

as Crithidia,Herpetomonas, Blastocrithia and Leptomonas are restricted to a single host

(monoxenous), usually an insect from the orders Diptera, Hemiptera or Siphonaptera [1].

Although such monoxenous or “lower” trypanosomatids seem to have their lifecycle essentially

confined to insect hosts [2], they have also been reported in plants [3] and immunocompro-

mised humans [1].

There is an increasing interest in monoxenous trypanosomatids as a model for understand-

ing the evolution and ecology of trypanosomatids [4], as well as how they may modify their

insect host [4]. It is now clear that monoxenous trypanosomatids are ubiquitous parasites of a

wide range of insect groups and have numerous effects on the physiology of the insect host.

These effects include alterations in fertility and reproduction, modified food intake, delayed

development and reduction in lifespan [5]. In projections of total animal biodiversity, insects

represent more than 60% of all animals [6]. Therefore, knowledge of insect physiology and

what can influence it, is essential for maintaining a species-rich environment especially when

longitudinal population data show a sharp decline in flying insect biomass [7]. In this context,

studies of trypanosomatid-insect interactions will provide vital insights into the ecology of cru-

cial insect species (e.g. pollinators).

To this end, a number of monoxenous trypanosomatid genomes and transcriptomes are

being investigated [8,9]; including bee parasites from the genus, Lotmaria passim (the honey

bee parasite) and Leptomonas pyrrhocoris a globally disseminated parasite isolated from fire

bugs [10,11]. These studies, and earlier work on the molecular biology of trypanosomatids,

have revealed that monoxenous parasites share many distinctive genome features with their

better-studied dixenous relatives [12].

The genomic DNA is arranged into ‘polycistronic’ (multi-gene) transcriptional units of

functionally unrelated genes, the majority of which lack introns. Given this gene arrangement,

the cells do not control an individual gene’s expression by varying its transcription level,

instead expression is controlled by RNA-binding proteins [13] and other post-transcriptional

processes such as RNA editing [14]. RNA editing processes include trans-splicing where 39

nucleotides, called a splice leader sequence, are added to the 5’ end of mRNAs [15]. The splice

leaders (also called mini exons) are encoded in tandem repeats in a different genomic locus to

the gene.

Trypanosomatid kDNA is arranged in interlocking ‘maxi-circles’ [16–18]. The kDNA max-

icircle is homologous to mitochondrial genomes in other systems but the sequence encoding

many of typical mitochondrial proteins is scrambled, relying on post-transcriptional mRNA

editing to reconstitute the correct coding sequence [19]. The kinetoplast also contains
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thousands of associated ‘mini-circles’ which encode guide RNAs involved in this editing pro-

cess [17].

In addition to ecological insights, studies of monoxenous trypanosomatids may help us

gain new perspective on interactions of more medically important parasites and their insect

vectors, which mediate neglected tropical diseases such as Leishmaniasis (vectored by phlebo-

tomine sand flies) and sleeping sickness (tsetse flies). To inform, and accelerate, research in

these experimentally challenging dipteran-parasite relationships, we have developed the study

of the model dipteran Drosophila melanogaster and its natural trypanosomatid Herpetomonas
muscarum [20]. We have established that a network of signalling in the intestine of the host

was important for clearance as well as for maintaining fecundity. This network involved NF-

κB and STAT-mediated transcription, which regulate intestinal stem cell proliferation that the

parasite attempts to suppress. Here, we turn our attention to the parasite. We report the

genome ofH.muscarum isolated from a wild population of Drosophila melanogaster in

Oxfordshire, UK. We also report the transcriptomes of this H.muscarum isolate from in vitro
culture and during the course of infection in D.melanogaster. The similarities with Leishmania
major both at the genome level as well as transcriptome regulation were striking. This was

especially the case in the early phases of host infection when the parasite needs to overcome

the barrier of the insect midgut and establish infection. Given the resistance mechanisms to

parasite establishment (and therefore onward transmission) reside in the dipteran midgut

[21], the Drosophila-Herpetomonasmodel may allow researchers to take advantage of the

extensive toolkit of genetic approaches available for Drosophila to uncover mechanistic details

of evolutionary conserved aspects of the relationship between trypanosomatids and dipteran

vectors, where the tool-box for functional studies is not yet fully developed.

Results/Discussion

The Herpetomonas muscarum genome

Assembly. PacBio and Illumina sequence reads were generated from an axenic culture of

H.muscarum promastigotes as described in Materials and Methods. The reads were assembled

into a genome of 41.7 Mbp in 264 scaffolds with the largest 1,793,442 bp in length (N50 =

707,495 bp). We observed a median read coverage of 114x with populations of scaffolds cover-

age at approximately 50x and 160x which may represent monosomic and trisomic scaffolds

(Fig 1, predicting 37–39 chromosomes). Kmer analysis of the sequencing reads estimated the

haploid genome length to be approximately 35.2 Mbp with a read error rate of less than 1% (S1

Fig, Vurture et al., 2017). While the GenomeScope [22] model does not fit the aneuploid

nature of trypanosomatid genomes (see below), we believe this suggests our assembly is

approximately the correct size.

Annotation. Gene model annotation was generated with Companion [23] using evidence

from RNA-seq data (described below) and the proteomes of L.major, L. braziliensis and T.

brucei as described in Materials and Methods. The finalH.muscarum v1 annotation contains

12,687 genes, of which 12,162 are inferred to be protein-coding (Table 1).

All unique open reading frames produced by the gene models were kept, even in cases

where the gene prediction was not strongly supported by RNA-sequencing evidence, in an

attempt to not ‘miss’ genes. It is therefore likely that this annotation contains a higher number

of genes than the ‘true annotation’. However, the number of reported genes is close to that

reported for other trypanosomatid species e.g. T. brucei TREU927 strain contains 11,567 genes

[24]. We also note that the few T. brucei genes reported to contain intronic sequences, e.g.

poly(A)-polymerase (Tb927.3.3160) and the mini-exon gene (see below), also appear to con-

tain intronic regions inH.muscarum.
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Conserved features of trypanosomatid genomes

Genome structure and large scale synteny. As seen in other trypanosomatid genomes,

open reading frames were found on both strands on many scaffolds. Genes are (mostly)

arranged in large groups of genes present on the same strand and in the same direction, which

is indicative of the polycistronic transcripts typical in trypanosomatid genomes. The regions

between polycistrons, commonly referred to as strand switch regions (SSRs), are thought to

Fig 1. Average coverage depth of H. muscarum scaffolds > 100 kb. The solid line shows the global median read coverage. The dashed line shows 1.5x and the dotted

line shows 2x the global median read coverage respectively. In blue are scaffolds which were mapped, by PROmer (Kurtz et al., 2004), to the L.major chromosome 31—

sequences of 300bp which map with> 70% identity. The shade of blue represents the proportion of the scaffold which was mapped.

https://doi.org/10.1371/journal.pgen.1008452.g001
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contain the transcriptional start sites for transcription of each group of genes. We used the

SSRs to define and estimate the number of polycistrons. Here we defined SSRs to begin and

end at genes where the downstream open reading frame is on the opposing strand of the same

scaffold. This highlighted 386 genes from 112 different scaffolds. These putative strand

switches were manually inspected and could be grouped into different three situations. There

were 128 bona fide strand switches which were either divergent (72 cases) or convergent (56

cases) (S1 Table). There were 166 cases where a single gene (or small group of< 5 genes) had

become inverted within a polycistron. Small genes (< 350bp) encoding hypothetical proteins

and tRNAs were commonly found in these cases, though other larger genes were also found in

these groups e.g. HMUS00935500.1 an putative trans-sialidase. Finally, there were 92 cases

where a strand switch does occur, but the precise locus was unclear. These cases tended to be

at where a single gene at the end of a scaffold was on the opposing strand to all other genes on

the scaffold–as such it was unclear if this represented a bona fide strand switch or a single gene

inversion. Overall, this indicated there are at least 128 polycistrons in theH.muscarum
genome, though this is likely to be an underestimate given the ambiguity of some strand switch

regions. Comparisons with other trypanosomatids genomes also suggest this figure is an

underestimate, e.g. L.major is predicted to have 184 polycistrons [25] and T. brucei is pre-

dicted to have 150 [26], both of which have smaller genomes and fewer predicted chromo-

somes thanH.muscarum.

Despite diverging before the existence of mammals [27], trypanosomatids show high gene

order conservation across the genome. As expected, theH.muscarum scaffold showed synteny

with other trypanosomatid genomes (Fig 2A–2E). Herpetomonas was most highly syntenic

with L.major despite being considered phylogenetically closer to Phytomonas and Leptomonas.
To quantify this, we took non-overlapping windows of adjacentH.muscarum genes with sin-

gle copy orthologs in three comparator genomes: L.major, T. brucei and Leptomonas seymouri.
For each window size, we count for how many windows have all orthologs on the same scaffold

in the comparator (syntenic windows), and for how many of those all the genes are in the same

relative order as theirH.muscarum orthologs (colinear windows). Almost 96% of 3-gene win-

dows of single-copy orthologs betweenH.muscarum and L.major (1845/1926) are syntenic,

and 53% of these are colinear (985/1845). This conserved genome structure is shared, to a

slightly lesser extent across the trypanosomatids (91.7% or 1386/1511 syntenic with T. brucei
brucei, 55% or 766/1386 colinear, 80.9% or 1643/2030 syntenic with L. seymouri, 46% or 761/

1643 colinear). This relationship holds across window sizes (Fig 2F). The values for synteny

with Leptomonas seymouri are likely to be biased downwards by the fragmentary assembly

available for that species, and this analysis does not capture rearrangements, expansions or

contractions of multi-gene families, for which one-to-one orthology is unlikely to be clear.

Table 1. Herpetomonas muscarum genome annotation summary.

Feature H. muscarum v1.0

Genes 12687

mRNAs 12162

CDSs 12175

Polypeptides 12934

Pseudogenes 772

rRNAs 168

snRNAs 3

snoRNAs 181

tRNAs 173

https://doi.org/10.1371/journal.pgen.1008452.t001
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Fig 2. Synteny and colinearity between H. muscarum and other trypanosomatids. As an example, this plot shows co-linearity betweenH.muscarum genes (genes

highlighted in blue) on scaffold 40 and: A. L.major chromosome 1 (genes highlighted in red). B. Phytomonas EM1 scaffolds HF955082, HF955140 and HF955140

(genes highlighted in green) C. Leptomonas pyrrhocoris scaffolds LpyrH10_33 and LpyrH10_41 (genes highlighted in pink) D. Crithidia bombi scaffolds (genes

highlighted in yellow) OESO01000125 and OESO01000148. E. Trypanosoma brucei chromosomes 9 and 11 (genes highlighted in purple). Scaffold/Chromosome labels

show length in bp. This data was produced using Promer alignments (Delcher et al., 2002). Ribbons between scaffolds show windows of>100 amino acid (translated)

Herpetomonas-Leishmania parallels
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Splice leader sequence. In trypanosomatids, each mRNA is capped, via trans-splicing

[reviewed in 15], with a conserved 39bp sequence called the splice leader (SL). The SL is

encoded by the mini-exon genes which are found throughout the genome in tandem arrays.

Each mini-exon has two components; the highly conserved 39bp sequence trans-spliced on to

mRNAs (the exon) and a less well conserved intronic sequence. Between each mini-exon gene

there is a variable spacer region which is not transcribed. To find the splice leader sequence for

ourH.muscarum isolate, we searched for the conserved 39bp SL sequence from Phytomonas
serpens (L42381.1) in theH.muscarum scaffolds. This gave 259 hits over 24 scaffolds, which

we used to identify 19 clusters of mini-exon gene repeats (over 15 scaffolds) containing 3–43

copies of the mini exon gene (see S2 Table). The first 111bp of the gene are common to all cop-

ies of the mini-exon gene and contain a 40bp splice leader sequence and what we predict to be

the intron.

The splice leader sequence (1-40bp) and the putative intronic region (41-111bp) were then

aligned with mini-exon sequences of several other trypanosomatids in the Leishmaniinae

clade—including 9 otherHerpetomonas isolated from heteropterans in the neotropics [28].

Whilst the splice leader sequence is well-conserved across the clade (Table 2), we observe vari-

ability in the A/T-rich region between bases 11-19bp which appears genus specific, with the

exception of theHerpetomonas sequences. H. rotimani and H. nabiculae have identical

sequence across the 11-19bp region. However, theH.muscarum andH. nabiculae differ from

each other, and the otherHerpetomonas sequences over this variable region. Additionally,

compared to other trypanosomatids, theHerpetomonas sequences have an ‘additional’ adeno-

sine between bases 10 and 11. The intronic region fromH.muscarum shows high similarity to

that of previously reportedHerpetomonas sequences. The first 15bp of the intronic sequence

appear to be conserved in other species from the Leishmaniiae clade, however the sequence

becomes more variable thereafter in both in terms of base content and length.

Tubulin loci. The architecture of the tubulin arrays has been described in a number of

trypanosomatids [29], with two mutually exclusive formats being defined–monotypic and

alternating. Monotypic tubulin arrays consist of either alpha-tubulin or beta-tubulin. Alternat-

ing arrays contain both alpha-tubulin and beta-tubulin genes which alternate along the array.

TheH.muscarum orthologues of Trypanosoma brucei alpha and beta tubulin genes were

found using Orthofinder and used to locate the tubulin arrays.

We identified three genomic loci containing H.muscarum tubulin genes (Fig 3). Two of

these loci consist of beta-alpha alternating arrays and the third locus consists of four copies of

a beta tubulin genes. The alternating beta-alpha arrays are consistent with previous findings

(reported asHerpetomonas megaseliae) [29] and suggested that, like T. brucei,H.muscarum
genome has the alternating tubulin array configuration. However, the presence of a monotypic

beta tubulin array in addition to the alternating arrays contrasts the established model in

which each species has either alternating or monotypic arrays, but not both.

The genes surrounding the monotypic beta tubulin locus shared some synteny with regions

of chromosome 4 of T. brucei and chromosome 8 of L.major (gene numbers Tb927.5.970 –

Tb927.927.5.3090 and Lmj.08.1090-Lmj.08.11140). Interestingly this region of L.major chro-

mosome 8 is one of two singleton beta-tubulin loci in the species. As such, the tubulin

align with at least 50% identity. This data was visualised using Circos (Krzywinski et al. 2009). To quantify these relationships, we investigated all windows of

consecutive genes with single-copy orthology inH.muscarum in comparison to L.major, T. brucei brucei and Leptomonas seymouri. F. Shows the proportions of these

windows for which all genes occurred on a single scaffold in the comparison genome (syntenic windows), and the proportion of those for which all gene occurred in the

same order as inH.muscarum (colinear windows) for a range of window sizes from 3 to 60 genes. Numbers of windows included in the comparisons varies from 1926

windows of 3 single-copy orthologs with L.major to 49 windows of 60 adjacent genes with single-copy orthologs in T. brucei. Note that synteny values are also affected

by the degree of continuity of the comparison species genome for Leptomonas seymouri.

https://doi.org/10.1371/journal.pgen.1008452.g002
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configuration ofH.muscarum was an intermediate between the tubulin array configurations

of T. brucei and L.major.

The predicted Herpetomonas muscarum proteome

Orthofinder [30] was used to identify orthologous proteins from other trypanosomatids in the

predicted proteome ofH.muscarum. For the analysis, protein coding genes from the following

species were used: 9 Trypanosoma species/subspecies (Trypanosoma brucei brucei, Trypano-
soma brucei gambiense, Trypanosoma congolense, Trypanosoma cruzi, Trypanosoma evansi,
Trypanosoma grayi, Trypanosoma rangeli, Trypanosoma theileri and Trypanosoma vivax), 4

Leishmania species (Leishmania braziliensis, Leishmania donovani, Leishmania infantum and

Leishmania major); 6 additional monoxenous trypanosomatids along with ourHerpetomonas
muscarum predictions (Angomonas deanei, Leptomonas pyrrhocoris, Leptomonas seymori,
Crithidia bombi, Crithidia expoeki, Crithidia fasciculata). Finally, we included a free-living,

non-trypanosomatid kinetoplastid, Bodo saltans, as an outgroup. From these 21 species 87.5%

of genes were assigned to 12,701 orthogroups (for summary see Table 3, full orthogroups table

S3 Table). We found 7,265 of these orthogroups contained H.muscarum genes. There were 45

orthogroups containing onlyH.muscarum genes, these groups contain 215 genes. Overall,

90.7% ofH.muscarum predicted proteins were assigned to an orthogroup.

Orthofinder also produced a phylogenetic tree based on protein sequences from proteins in

orthogroups which contained a single gene from every species used in the analysis (Fig 4A).

Table 2. Alignment of highly conserved splice leader sequences (bases 1–40 of mini-exon gene) of H. muscarum and other species from the Leishmaniiae clade. The

variable AT-rich region (positions 11–19, bold) is shown by genus.Herpetomonas sp. appear to have an additional A or T residue, dependant on species at position 11.

Species Accession # Splice leader sequence (bases 1–40)

Herpetomonas
muscarum

AACTAACGCTAAAAATTGTTACAGTTTCTGTACATTATTG

Herpetomonas
muscarum

EU095982.1�, EU095980.1�, EU095979.1�, EU095983.1, EU095984.1,

EU095981.1�
AACTAACGCTAAAAATTGTTACAGTTTCTGTACTATATTG

Herpetomonas sp.
TCC263

EU095976.1 AACTAAAGCATTATATAGATACAGTTTCTGTACTATATTG

Herpetomonas sp.
TCC263

EU095977.1 AACTAAAGCATTATATAGATACAGTTTCTGTACTATATTG

Herpetomonas roitmani EU095978.1 AACTAAAGCATTATATAGATACAGTTTCTGTACTTTATTG

Herpetomonas nabiculae KF054153.1 AACTAACGCTAT-TATTGTTACAGTTTCTGTACTTTATTG

Phytomonas EM1 X87138.1 AACTAACGCT-ATTCTAGATACAGTTTCTGTACTTTATTG

Phytomonas serpens L42381.1, L42378.1, L42377.1, L42382.1, L42376.1 AACTAACGCT-ATTCTAGATACAGTTTCTGTACTTTATTG

Phytomonas sp.Mar8 AF250993.1 AACTAACGCT-ATTCTAGATACAGTTTCTGTACTTTATTG

Phytomonas sp. Alp1 AF250967.1 AACTAACGCT-ATTCTAGATACAGTTTCTGTACTTTATTG

Leishmania braziliensis MG010484.1 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Leishmania tarentolae AY100201.1 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Leishmania hoogstraali AY100197.1, AY100200.1 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Leishmania
gymnodactyli

AY100195.1, AY100196.1 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Leishmania adleri AY100199.1, AY100194.1 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Leishmania major XR_002460055.1 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Leishmania mexicana Agami and Shapira 1992 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Leishmania donovani CP022617.1 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Leishmania infantum AF097653.1 AACTAACGCT-ATATAAGTATCAGTTTCTGTACTTTATTG

Blastocrithidia culicis DQ860204.1 AACTAACGCT-ATATTTGTTACAGTTTCTGTACTATATTG

Blastocrithidia culicis DQ860203.1 AACTAACGCT-ATATTTGTTACAGTTTCTGTACTTTATTG

https://doi.org/10.1371/journal.pgen.1008452.t002
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This tree is consistent with others published for the trypanosomatids (Maslov et al., 2013).

Unsurprisingly H.muscarum shares more orthogroups with L.major (6,607) than T. brucei

Fig 3. A. Alternating tubulin arrays in H. muscarum. Scaffolds 22 and 67 were found to have two loci containing alternating putative alpha (red) and beta (blue) tubulin

genes. Several of these genes we predict to be tubulin pseudogenes (alpha—pink, beta—light blue) as they contain tubulin domains but also contain sequence consistent

with non-LTR transposons. B. A monotypic beta tubulin locus in H. muscarum. Four copies of a putative beta tubulin (blue) were found in tandem onH.muscarum
scaffold 20. This locus appears similar to the single copy beta tubulin locus on L.major chromosome 8 as the order of adjacent genes (grey) is conserved. We also see

synteny with a locus in T. brucei on chromosome 5, however the beta tubulin gene is absent. Dotted lines indicate orthologous genes. Blue lines indicate orthologous beta

tubulin genes.

https://doi.org/10.1371/journal.pgen.1008452.g003
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(5,893)–which is more distantly related (Fig 4B). However, H.muscarum had slightly more

orthogroups in common (6754) with the two Leptomonas sp. used in the analysis (Fig 4C).

Finally, within the Leishmaniinae cladeH.muscarum and two species of ‘old world’ Leish-
mania, L.major and L. donovani, shared 81.2% of their orthogroups (Fig 4D). A global exami-

nation of the patterns of gene family sharing betweenH.muscarum, and other trypanosomatid

groups confirmed these patterns (Fig 5A). Most gene families, including most genes, are pres-

ent in all of the groups, and another significant set of families is shared by all the trypanosoma-

tid groups but missing from the outgroup, the free-living kinetoplastid Bodo saltans. These

trypanosomatidae-specific gene families tend to be quite large, while many smaller gene fami-

lies are specific to genera Crithidia and Trypanosoma, perhaps because of the more extensive

taxon sampling of these lineages. There are exceptions, including some strikingly large gene

families unique to trypanosomes, Leishmania and a number of other taxonomic groups (Fig

5B). Monoxenous trypanosomatids share many more genes families with Leishmania than

Trypanosoma, and there are strikingly few families specific to the Leishmania lineage or any of

the monoxenous parasites except Crithidia, explaining the strikingly similar predicted prote-

omes of Leishmania andH.muscarum.

We could not look in detail at all of the homology relationships between genes in this exten-

sive comparison. We used a more focused OrthoFinder analysis to investigate specific groups

of orthologues betweenH.muscarum and T. brucei genes of interest e.g. metabolic pathway

genes, as T. brucei is the best-studied kinetoplastid at the molecular and cellular level. We sum-

marise our findings in Table 4 (for full data see S4–S16 Tables) and discuss some of the ortho-

logues of interest, including surprisingly ‘missing’ orthologues, below.

Metabolism. H.muscarum is missing sphingolipid (SL) biosynthesis genes SLS1-4,

including the inositol phosphorylceramide synthase and two choline phosphorylceramide

synthases. These genes are part of the same orthogroup from our analysis. Most of the Trypa-
nosoma have 4 genes assigned to this orthogroup (with the exception of T. cruzi (2) and T.

vivax (0)). However, other species used in this analysis had only 1 gene assigned to this

orthogroup. Given that SLs are thought to be essential to eukaryotic membranes [31], this

seemed surprising. However, L.major promastigotes do not require de novo SL synthesis and a

mutant devoid of SLs was viable and replicated as log-phase promastigotes [32]. However, the

SL-free mutant was unable to differentiate into a metacyclic stage in vitro and showed severe

Table 3. Summary of Orthofinder analysis of 13 trypanosomatid genomes. (Trypanosoma rangeli, Trypanosoma

grayi, Trypanosoma brucei brucei, Trypanosoma brucei gambiense, Trypanosoma vivax, Trypanosoma congolense,

Leishmania donovani, Leishmania major, Leishmania mexicana, Leptomonas pyrococcus, Leptomonas seymori,

Crithidia fasciculata and Bodo saltans).

Total number of genes 212,664

Number of genes in orthogroups 186,070

Number of unassigned genes 26,594

Percentage of genes in orthogroups 87.50%

Number of unassigned genes 12.50%

Number of orthogroups 12,701

Number of species-specific orthogroups 313

Number of genes in species-specific orthogroups 4,212

Percentage of genes in species-specific orthogroups 2.0%

Mean orthogroup size 14.7

Median orthogroup size 14

Number of orthogroups with all species present 9

Number of single copy orthogroups 0

https://doi.org/10.1371/journal.pgen.1008452.t003
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defects in vesicular trafficking. As such, like L.major,H.muscarum and the other species with-

out a complete SLS pathway may rely on scavenging sphingolipids from the environment.

H.muscarum did not have orthologues for the carnitine O-acetyltransferase (CAT)

(Tb927.11.2230) and L-threonine 3-dehydrogenase (Tb927.6.2790) genes of the acetate metab-

olism pathway. We were also unable to find an orthologue to these genes in other species from

the Leishmaniinae clade used in the analysis. As such these genes may have been lost sometime

after the group diverged from Trypanosoma.
Additionally, three T. brucei respiratory chain genes did not appear to have orthologues in

H.muscarum, including mitochondrial NADH-ubiquinone oxidoreductase flavoprotein 2

(Tb927.7.6350), which had orthologues in all species used in the analysis apart fromH.mus-
carum. Similarly, the only genomes in the analysis without an orthologue for the cytochrome c

oxidase assembly protein (Tb927.10.3120) wereH.muscarum and Phytomonas EM1. Given

the importance of these genes, this likely indicates an important gap in theH.muscarum anno-

tation. Finally, no orthologue was identified for the T. brucei alternative oxidase (AOX)

(Tb927.10.7090) which is found in Trypanosoma and is upregulated in bloodstream forms.

This oxidase is thought to enhance organisms ability to cope with stress associated with tem-

perature change, infections and oxidative stress [33].

We also note that for several T. brucei genes there were multipleH.muscarum orthologues.

Two of the most extreme examples of this being the high-affinity arginine transporter AAT13

[34, 35] and the endo-/lysosome-associated membrane-bound phosphatase 2 (MBAP2) which

have 38 and 18 orthologous genes inH.muscarum respectively. The increased copy number of

these genes, hints at their importance, though the reason for their high-copy number inH.

muscarum is as yet unclear. AAT13 and MBAP2 have been shown to be highly upregulated in

Leishmania after their ingestion by sand flies and in conditions of nutrient starvation [36, 37].

Fig 4. Relationship between H. muscarum and other trypanosomatids. A. Phylogeny based on all orthogroups containing a single gene from each species. Other panels

show Venn-Euler diagrams in which the areas of each eliptical section are approximately proportional to the number of orthogroups shared by each of (B)H.muscarum,

L.major and T. brucei brucei; (C)H.muscarum, Leptomonas pyrrhocoris and L. seymouri and (D)H.muscarum, Leishmania donovani and L.major. Diagram layouts were

generated by EulerApe v2.0.3.

https://doi.org/10.1371/journal.pgen.1008452.g004
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Speculatively, the increased copy number of these genes may reflect the nutrient availability in

Herpetomonas’ environment/host(s).

Differentiation. RNA-binding proteins (RBPs) have emerged as key modulators of gene

expression in trypanosomatids—particularly in the context of trypanosome development and

Fig 5. A global view of gene family sharing between trypanosomatids. A. The numbers of gene families (orthogroups; pink bars; values on left-hand y-axis) and the

numbers of genes in those groups (blue bars; values on right-hand y-axis) with particular patterns of sharing between high-level groups in our Orthofinder data. Shading

in the lower panel from pink to blue represents how widespread each set of families are, with pink representing families specific to one group and dark blue those families

present in all groups. B. Scatterplot of gene family size against the number of species a family is present in, with each point representing a single gene family (families with

less than 3 genes in total are excluded), and points coloured according to the number of higher-level taxonomic groups they are shared between, as in the lower part of

panel A. [code to draw this diagram is a modified version of UpSetR].

https://doi.org/10.1371/journal.pgen.1008452.g005
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differentiation [38]. Orthologues were found for 72/75 T. brucei RNA-binding proteins. RNA-

binding proteins with no orthologues found inH.muscarum were: chromatin-remodelling-

associated RRM2 (Tb927.6.2550) [39], the pre-RNA processing protein RBSR1 (Tb927.9.6870)

[40] and a hypothetical RBP (Tb927.10.14950).

Table 4. Summary of H. musccarum proteins orthologous to important T. brucei proteins.

H.muscarum orthologues/T.

brucei proteins

T.brucei/L.major without orthologues in H. muscarum

METABOLISM

Glycolysis 44/45 Tb927.10.4520

Gluconeogenesis 2/2 n/a

Pentose phosphate pathways 12/13 Tb927.2.5800

NADPH metabolism 4/4 n/a

Acetate metabolism 14/17 Tb927.11.2230, Tb927.8.2790, Tb927.6.2790

TCA cycle 17/17 n/a

Mitochondrial carriers 24/25 Tb927.9.12140

Respiratory chain 79/82 Tb927.7.6350, Tb927.10.7090, Tb927.10.3120

Amino acid transporters 31/31 n/a

Lipid metabolism 9/11 Tb927.10.11930, Tb927.4.2700

Leu-Isoleu-Val degradation 22/23 Tb927.4.2700

Fatty Acid Biosynthesis 14/14 n/a

Sphingolipid biosynthesis 7/11 Tb927.9.9410, Tb927.9.9400, Tb927.9.9390, Tb927.9.9380

Glycerophspholipid biosynthesis 16/16 n/a

GPI-N-glycosylation biosynthesis 47/49 Tb927.4.4200, Tb927.1.4830

DIFFERENTIATION AND DNA

Quorum sensing 32/35 Tb927.4.3650, Tb927.11.2250, Tb927.11.11480

Bloodstream to procyclic form

differentiation

10/12 Tb927.10.10260, Tb927.10.11220

Epimastigote meiosis 4/5 Tb927.9.15510

RNA regulators of the life cycle 18/18 n/a

Proteins with RNA-binding

annotation

54/57 Tb927.10.14950, Tb927.6.2550, Tb927.9.6870

RNAi machinery 5/5 n/a

PROTEIN KINASES 147/169 Tb11.v5.0564, Tb11.v5.0644, Tb927.1.3130, Tb927.10.12480, Tb927.10.15880, Tb927.10.4940,

Tb927.10.9980, Tb927.11.5150, Tb927.11.5860, Tb927.3.1850, Tb927.3.3920, Tb927.3.5650,

Tb927.3.840, Tb927.4.4330, Tb927.5.4430, Tb927.7.4090, Tb927.9.12400, Tb927.9.12880,

Tb927.9.1500, Tb927.9.1570, Tb927.9.16260, Tb927.9.2350

PHOSPHATASES 86/93 Tb927.07.v5.1, Tb07.30D13.60, Tb927.10.4930, Tb927.11.11740, Tb927.11.4990, Tb927.11.5740,

Tb927.8.8040

NUCLEAR PROTEOME

Nuclear Pores 27/27 n/a

Exosome 12/12 n/a

Spliceosome 56/59 Tb927.10.7390, Tb927.9.6870, Tb927.3.1090

Kinetochore 30/34 Tb927.10.6330, Tb927.11.1030, Tb927.5.4520, Tb927.9.13970

OTHER PROTEINS OF INTEREST

GP63 14/15 Tb927.11.7610

Mucins 8/11 Tb927.8.7190, TcMUCII, Tb927.11.18610, Tb927.11.3400

LPG biosynthesis 20/29 LmjF.14.1400, LmjF.02.0160, LmjF.02.0170, LmjF.02.0190, LmjF.02.0200, LmjF.02.0210,

LmjF.02.0230, LmjF.35.0010, LmjF.25.2460, LmjF.31.3190, LmjF.36.0010, LmjF.02.0010,

LmjF.21.0010, LmjF.07.1170, LmjF.34.0510, LmjF.02.0180, LmjF.02.0220, LmjF.05.1230,

LmjF.19.650, LmjF.32.3900

Trypanothione synthesis 2/2 LmjF.05.0350, LmjF.27.1870

https://doi.org/10.1371/journal.pgen.1008452.t004
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We have not observed differentiation inH.muscarum using ‘classical’ temperature/pH

manipulations in vitro or during D.melanogaster infections. As such the ‘completeness’ of the

H.muscarum RBP repertoire, relative to T. brucei which has multiple discrete forms, is of

interest. Several of these proteins had multiple orthologues inH.muscarum including RBP10

(4 orthologues, Tb927.8.2780). RBP10 is known to be highly expressed in bloodstream forms

of T. brucei and its overexpression in procyclics led to an increase of many bloodstream-form

specific mRNAs, as well as transcripts associated with sugar transport, the flagellum and cyto-

skeleton [41]. The role for this protein inH.muscarum is unclear, as it does not appear to have

a bona fide vertebrate host, however given this proteins links to sugar transport, it may play a

more general role in metabolism inH.muscarum. Comparisons ofH.muscarum RBP expres-

sion levels/timings with other trypanosomatids may shed more light on their role in the cell

and potentially why we do not observe differentiated forms for this species.

In addition to the RBPs, we were unable to find any orthologues for the hydrophilic acyl-

ated surface proteins (HASPs) or small hydrophilic endoplasmic reticulum-associated proteins

(SHERPs) which are associated with metacyclogenesis in Leishmania. We also note that the

repressor of differentiation kinase 1 (RDK1, Tb927.11.14070) has 6 orthologues inH.mus-
carum. In T. brucei, RDK1 acts with the PTP1/PIP39 phosphatase cascade to prevent uncon-

trolled differentiation from bloodstream to procyclic form [42]. Given thatH.muscarum is

thought to be confined to insects, the presence of multiple copies of this gene which assists in

maintaining a ‘vertebrate’ cell form in T. brucei is intriguing. It may be that this protein has an

alternative role inH.muscarum.

Surface proteins. No orthologues were found for the EP procyclins which are known to

be expressed highly T. brucei procyclic whilst in the tsetse vectors and are thought to provide

protection from the digestive enzymes in the insect midgut [43, 44]. As suchH.muscarum
likely relies on other surface proteins for protection in the insect midgut (see the transcrip-

tomic data below).

The lipophosphoglycan (LPG) is an abundant component of the Leishmania cell surface

and its importance during multiple stages of the Leishmania life cycle, including interactions

with the insect gut epithelium, is well known [45, 46]. As such the prescence of LPG synthesis

ezymes inH.muscarum is of great interest (see Table 4 and S9 Table). Single copy orthologues

were found for the LPG biosynthesis-associated proteins GPI12/14 and LPG2-5. The β-galac-

tofuranosyl transferases LPG-1, -1R and -1L were grouped together in a single orthogroup

(orthogroup 32) which contained 12H.muscarum orthologues. However, no orthologues

could be found for the β-galactofuranosyl transferases LPG1G1-3 inH.muscarum, these genes

were only found in Leishmania species and L. pyrrocoris in our analyses (orthogroup 7861).

Orthogroup 32 contained genes from all species used in this analysis with the exception of the

two T. brucei sub species. Speculatively, orthogroup 32 may represent a more ancient group of

these enzymes, whilst orthogroup 7861 may be a more recent development within the Leish-
mania/Leptomonas species.

The three L.major side chain arabinosyltransferases SCA1, 2 and L were grouped into a sin-

gle orthogroup (orthogroup 886). This orthogroup consisted of only Leishmania, Leptomonas
and T. grayi proteins. Similarly, the L.major side chain galactosyltransferases (SCG1-7) and

related proteins (SCGR1-6) were grouped into a single orthogroup (orthogroup 60) which

contained protein sequences from only Leishmania and Leptomonas suggesting these proteins

may be Leishmaniiae specific.

Orthofinder was unable to find an orthologue to the major surface proteins of salivary

gland forms of T. brucei—BARPs (bloodstream alanine-rich proteins). These GPI-anchored

proteins required for tsetse salivary gland colonisation [47, 48]. Additionally, we do not find

orthologues for the T. bruceimetacyclic invariant surface proteins (MISPs) which are found
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extending above the VSG coat in salivary gland metacyclic forms [49]. Given the proteins are

crucial for salivary gland colonisation, the lack of copies in theH.muscarum genome may par-

tially explain the inability ofH.muscarum to colonise the salivary glands of D.melanogaster,
instead infections are confined to the insect crop and gut [20].

Finally, the 13 T. brucei GP63 genes were grouped with 28H.muscarum genes. GP63 is a

major surface protease in L.major promastigotes. The comparatively high copy number of

GP63 inH.muscarummay highlight its importance. Furthermore, GP63 has been implicated

in Leishmania virulence [50], and as such these will be of interest in future studies.

Nuclear proteome. Kinetochore interacting protein 3 (KKIP3, Tb927.10.6700) and SR

protein (Tb927.9.6870) had no orthologues inH.muscarum or other species from the Leishma-

niiae clade used in the analysis and as such they appear to be Trypanosoma specific. RNAi of

KKIP3 in T. brucei resulted in defects in DNA segregation and reduced population growth [51].

Additionally, T. brucei’s kinetochore interacting protein 1 (KKIP1), PHF5-like protein

(Tb927.10.7390) and U1 small nuclear ribonucleoprotein 24 kDa (Tb927.3.1090) had ortholo-

gues in all species used in the analysis apart fromH.muscarum. Similar to KKIP3, RNAi

knock down of KKIP1 caused defects in DNA replication, though in the case of KKIP these

defects were more severe–resulting in the loss of entire chromosomes [51]. It is unclear if these

genes have been lost inH.muscarum or this indicates a gap in the current annotation. Based

on the importance of KKIP1 and the fact these genes have orthologues in all other species ana-

lysed, it is likely to be the latter.

Finally, H.muscarum appears to have a ‘full set’ of the T. brucei RNA interference pathway

genes including an orthologue for TbARGO1 (Tb927.10.10850). Genes from this well-con-

served (in metazoans) pathway have been lost in several trypanosomatids including: L.major,
L. donovani and T. cruzi [52, 53, 54]. The loss of this pathway in these organisms has been

linked to Leishmania RNA virus perturbation [54, 55]—though this has not been explicitly

demonstrated. Further investigations to look for evidence of viruses akin to the LRVs inH.

muscarum could test the link between RNAi and virus infection in trypanosomatids. The pres-

ence of a functional RNAi pathway has also been linked to transposon activity in Leishmania–
with RNA-negative species lacking active transposable elements (TEs), and RNAi competent

L. braziliensis harbouring several classes of active TEs [55, 56]. Given this, it is possible that the

loss/lack of active TEs in L.major and L. donovani have lifted the requirement of the RNAi

pathway to protect against TE-associated genomic perturbations. We did observe transcripts

corresponding to the telomere associated transposable elements (TATEs) in allH.muscarum
transcriptomes (see below). As such, there may also be an important link between RNAi and

transposon activity in trypanosomatids.

The H. muscarum transcriptome during in vitro culture

We first analysed the transcriptome ofH.muscarum during in vitro axenic culture, specifically

to compare log-phase and stationary phase cultures. Knowledge of the log-phase transcrip-

tome was especially important as this was the ‘pre-infection’ transcriptome in our Drosophila
infection model. By comparing the log-phaseH.muscarum transcriptome with that ofH.mus-
carum in flies we sought to identify genes important in the establishment of infection (see sec-

tion below). The principal component analysis (PCA) plot (S2 Fig) shows that the first

principal component is mostly capturing variation between distinct clusters of samples from

log and stationary phase and explains 68% of the variance in these data. As expected, we found

extensive differential expression between log-phase and stationary phase, with 4044 genes sig-

nificantly differentially regulated (p-adjusted <0.05) (S16 Table). This is approximately a third

of the genome but most changes in expression were modest, with only 264 genes
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upregulated� 2-fold in stationary phase cells and 811 downregulated� 2-fold which we will

discuss further below. GO enrichment analysis, using Ontologizer [57], did not identify any

significantly enriched GO terms associated with differentially regulated genes. However only

62% ofH.muscarum genes have associated GO terms. As such, we looked for enrichment in

Pfam domains. There were 26 Pfam domains significantly enriched in the genes upregulated

in stationary phase and 73 Pfam domains significantly enriched among downregulated tran-

scripts (S17 Table), which we discuss further below.

Cell cycle associated proteins. The Pfam domain associated with cyclins was significantly

enriched in genes upregulated in stationary phase cells. From this, we investigated the expres-

sion profiles of the cyclins, and their associated kinases. Eleven were found to be differentially

regulated between the two cell populations (Table 5).

There was significant downregulation of the mitosis-associated cyclin 8, CRK3 and several

mitochondrial DNA polymerase subunits in stationary phase cells. Knockdown of CRK3 in T.

brucei is associated with a reduction in cell growth [58]. Furthermore, there was upregulation

of the G1-associated cyclins 7, 4 and 11. These observations reflect the observed reductions in

cell replication at higher cell densities. Consistent with this, and with a reduction in cell

growth, there were also significant reductions in transcripts for α- and β-tubulins, DNA poly-

merases and several protein synthesis-related genes including: 40S ribosomal subunits, 28S

rRNAs and five putative elongation factor 2 genes. However, there was also upregulation of

mitosis-associated cyclin 2 in the stationary phase cells. Cyclin 2 has two roles in T. brucei pro-

cyclics: cell cycle progression through G1 and the maintenance of correct cell morphology at

the posterior end of the cell [59]. The CRKs 10 and 12, which were also upregulated in station-

ary phase cells, have been shown to interact with cyclin 2 and their knock-down results in

growth defects [60]. CRK12 is also essential to survival of T. brucei in mice and its depletion by

RNAi lead to defects in endocytosis, an enlarged flagellar pocket and abnormal kinetoplast

localisation [61]. Given the relative abundance of many transcripts associated with reduced

replication in stationary phase cells, the upregulation of cyclin 2 and its associated CRKs (10

and 12) may be more relevant to the maintenance of correct cell morphology than mitosis.

Table 5. Significantly differentially regulated cyclins and cyclin-related kinases between stationary, and log phase H. muscarum.

Gene Name H. muscarum orthologue ID log2FoldChange adjusted p-value

CRK4 HMUS00195900.1 1.3 8.89E-10

cyclin 11 HMUS01322900.1 1.2 4.32E-05

cyclin 2 HMUS00751100.1 1.2 2.72E-19

cyclin 4 HMUS00787500.1 1.1 1.53E-17

cyclin 7 HMUS00475100.1 0.8 2.41E-14

CRK10 HMUS01143000.1 0.7 6.49E-09

cyclin 5 HMUS00580100.1 0.7 2.02E-12

cyclin 10 HMUS01323000.1 0.5 0.001

CRK12 HMUS00986000.1 0.3 0.015

DNA-directed RNA polymerase III subunit, putative HMUS00638800.1 -0.3 0.032

mitochondrial DNA polymerase I protein C HMUS00828800.1 -0.5 0.006

mitochondrial DNA polymerase I protein D HMUS00617400.1 -0.5 0.018

mitochondrial DNA polymerase I protein B, HMUS01100200.1 -0.6 0.007

DNA polymerase alpha/epsilon subunit B HMUS00740000.1 -0.7 0.004

DNA polymerase delta catalytic subunit HMUS00566500.1 -0.7 0.006

CRK3 HMUS00914500.1 -1.0 1.06E-40

cyclin 8 HMUS00524500.1 -1.0 1.40E-39

https://doi.org/10.1371/journal.pgen.1008452.t005
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Stress and metabolism. Stationary phase (of growth) is associated with build-up of toxic

waste products and fewer nutrients available per cell. It was therefore unsurprising that we

observed transcriptional changes indicating metabolic change and nutrient starvation. Genes

containing the Pfam domain associated with major autophagy marker ATG8 were signifi-

cantly enriched in stationary phase transcripts (33 in total). Autophagy is a vital process for

survival in nutrient poor environments and involves the segregation of the cell components to

be recycled into double membrane-bound vesicles called autophagosomes. The requirement

for increased amounts of membrane in autophagy, may partially explain the upregulation of

fatty-acid synthesis related genes in stationary phase, as fatty acids are crucial components of

cell membranes. Three lipases, two putative lipase precursor-like proteins, fatty-acyl-CoA

Synthase 1 and putative fatty acid elongase (ELO) protein were upregulated upon entry into

stationary phase. This is consistent with observations of Trypanosoma cruzi cultures [62].

Whilst the upregulation of autophagy-related genes is an indicator of cell stress, we also

observed the downregulation of several genes with domains associated with responding to oxi-

dative stress including: thioredoxin, glutathione S-transferase and alkyl hydroperoxide reduc-

tase (AhpC) and thiol specific antioxidant (TSA). As such, cells do not appear to be under

significant oxidative stress. Other forms of stress, such as reduced nutrient availability or pH

changes, may be driving the predicted increases in autophagy. Additionally, transcripts bear-

ing the heat shock protein 60 HSP60 domain (PF00118) were also significantly enriched in the

downregulated transcripts, which is another indicator of cell stress.

Cell surface proteins. Proteins sharing a domain (cl28643) with the variant surface pro-

tein (VSP) proteins of the Giardia lamblia, a flagellated intestinal pathogen, were highly repre-

sented among genes upregulated in stationary phaseH.muscarum. In G. lamblia, these VSPs

are integral membrane proteins rich in cysteine residues, often in CxxC repeats. They have a

highly conserved C-terminal membrane spanning region which has a hydrophilic cytoplasmic

tail with a conserved five amino acid CRGKA signature sequence, and an extended polyadeny-

lation signal [63, 64]. One VSP, of hundreds in the Giardia genome, is expressed per Giardia
cell and they are thought to protect the cells from proteolysis [65]. A similar strategy of surface

protein expression is utilised by blood stage T. brucei cells [66]. This method of antigen switch-

ing plays a major role in immune system avoidance and survival in vertebrate hosts. InH.mus-
carum the VSP domain-containing genes are predicted, by Phobius [67], to encode proteins

with 8–9% cysteine residues, and a single predicted transmembrane domain predicted at the

C-terminus. Notably there were also ten VSP domain containing proteins downregulated

upon entry into stationary phase.

In addition to the VSP domain containing genes, several other putative surface proteins

were differentially regulated upon entry to stationary phase; two putative amastin genes were

highly upregulated, and eight transcripts which encode for proteins with the cytomegalovirus

UL20A protein domain (PF05984), were downregulated in stationary phaseH.muscarum
cells. The functions of proteins with UL20a domains, including the domains namesake, are

largely unknown. Deletion of UL20a from the human cytomegalovirus genome resulted in

reduced viral production in infected fibroblasts [68]. Further study will be required to eluci-

date the role of these proteins in trypanosomatids.

Transcription. The bias towards downregulated transcripts in the stationary phase cells

as compared to log phase suggests a reduction of transcription and translation during station-

ary phase. Furthermore, five tRNA-synthase Pfam domains (PF00133.22, PF00749.21,

PF00152.20, PF00587.25, PF01411.19) were significantly enriched in downregulated tran-

scripts (chi-squared, p< 0.05) and RNA polymerase III subunits were also downregulated.

Overall, transcriptomic changes associated with cell surface remodelling, autophagy and

reductions in transcription were observed in cells entering stationary phase. Cyclin expression
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patterns appear to suggest a bias in cells at G1 phase, as reported for in vitro culture of T. brucei
procyclics [69].

Transcriptome of H. muscarum inside D. melanogaster compared to in
vitro culture

To identify potentially importantH.muscarum genes during the infection of D.melanogaster
we sought to analyse the transcriptome of the trypanosomatid over the course of infection by

RNA-sequencing analysis. RNA was purified from infected flies at 6, 12, 18, and 54 hours post-

ingestion ofH.muscarum. The resulting RNAs were sequenced and mapped to the

concatenated genomes of D.melanogaster andH.muscarum. Reads were later resolved to the

corresponding species. Here we will discuss the resulting transcriptome ofH.muscarum: the

transcriptome of D.melanogaster after ingestion ofH.muscarum in the same experiment was

discussed elsewhere [20].

The number of reads which mapped to theH.muscarum genome ranged from 6949 to

approx. 16.2 million reads per sample. At 6 hours post ingestion 40% of the total mapped reads

were shown to map toH.muscarum (average of 3 biological replicates). This decreased to 20%

in samples from 12 hours and 9% at 18 hours post ingestion. This correlates with the observed

decrease inH.muscarum numbers as the parasite was cleared by D.melanogaster 18–54 hours

post ingestion [20]. For differential expression analysis, only data up to 18 hours post infection

was used as at 54 hours the number of sequencing reads mapping to theH.muscarum genome

dropped below 1% of the total number of mapped reads (Fig 6).

Principal component analysis (PCA) shows that the first two principal components of vari-

ation in mRNAs betweenH.muscarum from in vitro culture andH.muscarum after ingestion

by D.melanogaster explained 58% and 10% of the variance in these data (Fig 6B). The PCA

plot shows a high degree of difference between the in vitro samples and samples isolated from

infected flies. The level of change in expression was much higher than between the two in vitro
conditions discussed above.

For the infections, log phaseH.muscarum cultures were used to feed the flies. In order to

identify transcriptomic changes inH.muscarum associated with being ingested by the fly, we

compared the transcriptome ofH.muscarum cells from log phase in vitro culture to the in-fly

transcriptomes. Over a third of the genome, 4,633 genes, was significantly differentially regu-

lated (Wald test, adjusted p-value < 0.05) between log phase axenic culture samples and sam-

ples from infected flies (S18 Table). Comparisons of gene expression between sequential time

points over the course of infection revealed that there was a large initial transcriptomic change

upon ingestion with 4662 genes differentially regulated between log phase culture and six

hours post ingestion. This large initial transcriptomic shift was followed by more subtle tran-

scriptomic changes between 6–12 (204 genes) and 12–18 hours (25 genes) (adjusted p-

values< 0.05). Here we describe some of the changes in gene expression observed after inges-

tion and how these compare with other published transcriptome studies of trypanosomatids in

their insect vectors including notable work by Inbar et al., 2017 [37] on genes expression of

four morphologically distinct L.major stages in a sand fly vector and Savage et al., 2016 [70]

on T. brucei in three tsetse fly tissues.

Herpetomonas muscarum genes differentially regulated at six hours post-

ingestion by Drosophila melanogaster
Approximately a third of theH.muscarum genome was found to be significantly differentially

expressed between log phase axenic culture and six hours post ingestion by D.melanogaster
(p< 0.05) (S19 Table). Of this subset, 640 genes had a fold change of� 4 between the time
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points–highlighting the magnitude of the trypanosomatids response to ingestion. GO enrich-

ment analysis, using Ontologizer [57], identified two significantly enriched GO terms in the

346 transcripts comparatively enriched at six hours post ingestion; OG0000045 (autophago-

some assembly, p = 0.0014) and OG0003333 (amino acid transporters, p = 0.0002). Given the

aforementioned lack of annotated GO terms inH.muscarum, we also looked at Pfam enrich-

ment in theH.muscarum genes significantly upregulated upon ingestion by the fly. The top 15

represented Pfam domains in genes upregulated� 4-fold at six hours post-ingestion are all

significantly enriched compared to the full gene set (S20 Table). Additionally, there were sev-

eral Pfam domains enriched in the downregulated transcripts, which we discuss further below.

Leucine-rich repeat proteins. The most represented Pfam domain in genes upregulated

at 6 hours post ingestion were the leucine-rich repeat (LRR) domains. LRRs are primarily

known to be involved in protein-protein and protein-glycolipid interactions and are the major

domain of the Leishmania protein surface antigens (PSAs), which are known virulence factors.

Ten of the upregulated LRR-containing genes encode orthologues of the Leishmania PSAs

(Fig 7A). The predicted protein structures for 8/10 of these transcripts consists of a single

transmembrane domain at the N-terminus, with the majority of the protein predicted to be on

the external face of the cell (S21 Table). One transcript encodes a protein with no predicted

transmembrane domains and could therefore be a secreted protein. The remaining transcript

encodes a protein with two predicted transmembrane domains, with the region between these

domains on the external face of the cell. Other upregulated LRR-containing transcripts are

putative adenylate cyclases. These proteins also feature prominently in the T. brucei genes

which are differentially regulated upon ingestion by tsetse [70]. These signalling proteins likely

assist in the coordination of the trypanosomatids’ responses to the environment with its

vector.

Cell surface genes. Seven of the top fifteen genes, 21/346 overall, upregulated inH.mus-
carum at six hours post ingestion by D.melanogaster contained the Giardia variant-specific

surface protein (VSP) domain (PF03302.13). These genes are members of three distinct

orthogroups. A heatmap showing the normalised read counts for these genes across all samples

is shown in Fig 7B. Transmembrane domain prediction tools [67, 71] predict a single trans-

membrane domain at the N-terminus in the majority of predicted protein sequence for these

genes. However, there were also eight transcripts without predicted transmembrane domains,

which are predicted to be secreted proteins. The majority of these putative surface antigens are

769–781 amino acids in length, have a single predicted transmembrane helix at residues 7–29

(S21 Table). As previously mentioned, many of these proteins are also upregulated by the cells

upon entry into stationary phase, though not to the same levels. Additionally, several tran-

scripts for VSP-containing proteins are downregulated inH.muscarum upon entry into the

fly. These thirteen proteins are generally smaller than those upregulated at the same time point

(95–501 amino acids) and tended to be part of orthogroup 11.

Thirty amastins, from 11 different orthogroups, were differentially regulated inH.mus-
carum at 6 hours post ingestion (Fig 7C). The majority (21) were upregulated upon entry into

the fly, though 14 transcripts were also upregulated during stationary phase in vitro culture.

Each orthogroup represented contained both up- and down-regulated genes. The function of

this family of glycoproteins, are not well understood. In Leishmania, amastins are more

Fig 6. A. RNA-seq reads extracted from infected flies (whole) which mapped to H. muscarum genome. Error bars

show the standard error of the mean. B. Principal component analysis of differentially expressed H. muscarum
genes in log phase culture vs. samples isolated from infection flies at 6, 12 and 18 hours post-ingestion. There are

two clear sample groupings (circled) which correspond to RNA from l in in vitro culture log phase cells and RNA

isolated from infected flies. Different shades of blue indicate the sample origin (n = 3 per condition).

https://doi.org/10.1371/journal.pgen.1008452.g006
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commonly associated with macrophage-dwelling amastigote forms, where they are known to

be important to both survival and virulence [72]. However, it has also been shown that β-amas-

tins are upregulated during the insect stages of the life cycle in T. cruzi [73]. TheH.muscarum
amastins from orthogroup 18 share only 25–30% identity (across the whole sequence) to the

two pairs of T. cruzi β-amastin alleles highlighted in this study. This may initially seem to be

quite low, however the β-amastins have been shown to be highly divergent (18–25% identity)

between T. cruzi strains [73]. Therefore, based on sequence alone, it is unclear which proteins

may have parallel roles in the two trypanosomatid species.

Several other classes of surface protein genes were differentially expressed between log-

phase axenic culture and six hours post-ingestion. Transcripts for proteins containing the

Cytomegalovirus UL20A protein domain (PF05984) were significantly down regulated upon

ingestion. Five of these genes were from orthogroup 11 –the same group as many of the down

regulated VSP domain containing genes. Finally, sixteen (of the twenty-eight in the genome)

H.muscarum orthologues to known Leishmania virulence factor, GP63, were significantly dif-

ferentially regulated in the first six hours post ingestion by the fly. All but one of the differen-

tially regulated GP63 orthologues were predicted to be GPI-anchored at the cell surface

(GPI-SOM online tool) [74]. The exception, HMUS00892600.1, is predicted (THTMM v2.0)

[71] to have a single transmembrane domain and for the majority of the protein to be cyto-

solic. Most GP63 transcripts were upregulated inH.muscarum after ingestion (log2 fold-

changes 0.29–2.73), however two putative GP63 genes, HMUS01311000 and HMUS01311200,

were downregulated with log2 foldchanges of -1.94 and -1.58 respectively.

Stress-related genes. The insect gut is a hostile environment. The presence of digestive

enzymes, changes in pH and the insect’s gut microbiota make surviving a difficult challenge for

any invading organisms. In correlation with this, a number of stress-associated genes and path-

ways are upregulated inH.muscarum upon entry into the fly. As previously mentioned, autop-

hagy is an important process for survival in stressful conditions where fewer nutrients are

available—such as in the midgut of an insect. Similar to observed in stationary phase axenic cul-

ture, twenty-six putative ATG8 genes were upregulated inH.muscarum at six hours post inges-

tion compared to log-phase axenic culture–suggesting extensive protein recycling is occurring

in the cells. Additionally, 40 heat shock protein 83 genes were shown to be upregulated at six

hours after ingestion. Heat shock proteins act as molecular chaperones which stabilise other

proteins, help them to fold correctly and be regulated after damage in stressful conditions. The

upregulation of these genes provides further evidence that these cells are in a stressed state.

Metabolism. There was significant enrichment of putative amino acid, pteridine and

sugar transporters in the upregulated transcripts. These included the amino acid transporters

(AATs) orthologous to the Leishmania amino acid permease 3 (AAP3), AAT11, AAT12 and

AAT20. AAP3 has been shown to be arginine specific and is linked to virulence in L. donovani
infections in humans [75]. AAT11 is upregulated in during stress responses associated to

purine starvation [76]. In L.major, AAP3 and AAT20 were strongly upregulated in the motile,

gut-dwelling nectonomad forms [37]. These transporters have been shown to transport neutral

amino acids across the cell membrane, notably proline and alanine, which can be used as alter-

native carbon sources by trypanosomatids and are abundant in insect vectors haemolymph.

Fig 7. Heat map of normalised, log transformed counts for differentially expressed Herpetomonas muscarum surface

proteins. A.H.muscarum orthologues to the Leishmania promastigote surface antigens. B. Transcripts encoding proteins with a

Giardia variant surface protein (PF03302.13) domain. The black bar indicates the genes from orthogroup 11 which are mostly

downregulated upon ingestion ofH.muscarum by the fly. C. Differentially regulated H. muscarum amastin genes. Log = log

phase axenic culture samples, Stat = stationary phase axenic culture samples. 6h = six hours post ingestion by D.melanogaster,
12h = twelve hours post ingestion by D.melanogaster, 18h = eighteen hours post ingestion by D.melanogaster.

https://doi.org/10.1371/journal.pgen.1008452.g007
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Six putative pteridine transporters were also upregulated inH.muscarum at 6 hours post

ingestion. Pteridines are needed by trypanosomatids to produce enzyme cofactors such as

biopterin. Leishmania parasites are unable to synthesize their own pteridines [77] and as such

must scavenge them from their environment. It is not currently known ifH.muscarum is also

a pteridine auxotroph, however like the Leishmania species, the cells appear to scavenge from

the environment upon entry into the fly.

Several transcripts putatively involved in lipid metabolism were downregulated inH.mus-
carum following ingestion by D.melanogaster, including triglyceride lipases and members of

the biotin/lipoate protein ligase (BLPL) family. This contrasts what has been observed in L.

major in the midgut of sand flies where genes from these families were upregulated [37].

Therefore, whilst upregulation of pteridine and amino acid transporters appears to be a con-

served trypanosomatid response to being ingested by insects, lipid metabolism during insect

infection may differ between trypanosomatid genera.

Gene expression-related transcripts. Consistent with the differential expression of many

genes upon entry into the fly, and therefore a predicted increase in chromatin remodelling and

translation activity, there was upregulation of histones (2A, 3 and 4), RNA polymerase sub-

units 1 and 2, putative 40S/60S ribosomal proteins and putative 28S beta rRNAs in H. mus-

carum after ingestion by the fly. This result is consistent with what has been reported in T.

brucei where the 40S and 60S ribosomal subunits were amongst the most highly upregulated

genes in cells isolated from the midgut and proventriculus of G.morsitans [70].

Cell cycle. Upon ingestion by the fly there was strong upregulation of putative G1-associ-

ated cyclins 4, 7 and 11 as well as the G1 associated cyclin-related kinase 1 (CRK1) [58]. Cyclin

6, cyclin 8 and CRK9, which are associated with the G2/mitosis transition [59, 78], were

slightly downregulated suggesting a reduction in cell replication at six hours post ingestion

(Table 6). Consistent with this there was also downregulation of putative DNA polymerase

kappa, the theta DNA polymerase subunit and mitochondrial DNA polymerase subunits. Fur-

thermore meiosis-associated genes NBS1, Rad50 and SPO11 were also downregulated.

Given the apparent reduction replication rate inH.muscarum cells at six hours after inges-

tion, the upregulation of nine tubulin genes (3 alpha- and 6 beta-tubulins) is likely to accom-

modate the changes in cell morphology, rather than to produce new daughter cells. Tubulin

upregulation is also observed in T. brucei isolated from the midgut and proventriculus of Glos-
sina morsitans [70], though these cells are replicative–as such the ‘motivation’ for increased

tubulin gene expression may be different.

Differentiation and RNA-binding proteins. It is well documented that (human) disease-

causing trypanosomatids have several life-cycle stages within their respective vectors. Coordi-

nated differentiation between these discrete stages requires a suite of RNA-binding proteins

(RBPs) which regulate parasite gene expression [38]. Despite the lack of observed differenti-

ated forms in infections of D.melanogaster, several differentiation associated-RBPs are differ-

entially regulated in the trypanosomatid after infection including RBP10 and hnRNP F/H.

These proteins have been shown to regulate gene expression in T. brucei blood-stream forms

[41, 79]. RNAi knockdown of RBP10 in bloodstream trypanosomes resulted in the downregu-

lation of a large number of bloodstream form mRNAs [41]. The same study showed that over-

expression of the protein in procyclics led to an increase of many bloodstream-form specific

mRNAs, including genes involved in sugar transport. This is likely owing to the fact blood is a

glucose-rich environment and the cell will attempt to utilize this ready carbon source [80].

Three out of the four orthologues of TbRBP10 were strongly (> 4-fold) upregulated inH.mus-
carum cells after ingestion by D.melanogaster. During feeding experiments sucrose is added to

theH.muscarum culture media to encourage the flies to feed. As such these genes may be

unregulated in response to increased sugars available in the environment.
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However, several other cell-cycle regulating RBPs associated with blood-stream form try-

panosomes were also upregulated inH.muscarum after ingestion by the fly, including zinc-fin-

ger domain-containing RBPs ZC3H11 and ZC3H18. The former is essential in bloodstream-

form trypanosomes and is involved in protection from heat shock, whilst depletion of

ZC3H18 delayed blood stream form-to-procyclic differentiation in T. brucei [81, 82]. As such

the situation may be more complex than solely metabolism-driven expression changes.

In addition to parallels with blood-stream form trypanosomes, transcripts for ALBA3/4

proteins (named for their ‘acetylation lowers binding affinity’ domain) were significantly

downregulated inH.muscarum upon entry into the fly. In T. brucei, these proteins are

expressed in all stages, except those found in the tsetse proventriculus. RNAi knockdown of

these proteins in T. brucei axenic procyclics resulted in elongation of the cell body and reposi-

tioning of the nucleus and the kinetoplast to resemble the epimastigote cell-stage [83]. As such

the reduction in ALBA3/4 transcripts suggests there may be parallels between trypanosomes

during the latter stages of tsetse infection and H.muscarum during D.melanogaster infection.

Other differentially regulated RNA-binding proteins with as yet unclear roles in differentia-

tion included: the essential gene expression regulation protein RBP42 and ZC3H12, a protein

associated with differentiation [38].

Herpetomonas muscarum genes differentially regulated between six- and

twelve-hours post-ingestion by Drosophila melanogaster
There were 204 genes which were differentially regulated between six- and twelve-hours post

ingestion (p-adjusted < 0.05), 161 of these had a fold change of� 2 with just 31 genes upregu-

lated at the latter timepoint (S22 Table). Hypothetical proteins lacking functional information

dominated the highly upregulated genes. The most enriched transcript at 12 hours post inges-

tion encodes a putative surface protein, the top blastp hit for which was the Giardia variant-

specific surface protein VSP136-4. This suggests VSP domain-containing proteins continue to

be important throughout infection of the fly. Two DNA replication and repair associated tran-

scripts were also upregulated at 12 hours post ingestion: an orthologue of T. brucei cell division

Table 6. Cell cycle-associated proteins differentially expressed in H. muscarum upon ingestion by D. melanogaster. Fold changes shown are at 6 hours post ingestion

compared to log phase axenic culture.

Gene Name H. muscarum orthologue ID log2foldchange adjusted p-value

cyclin 11 HMUS01322900.1 -3.31 6.54E-27

cyclin 4 HMUS00787500.1 -1.15 3.62E-13

CRK4 HMUS00195900.1 -0.95 3.46E-03

CRK1 HMUS01116400.1 -0.84 9.95E-08

CRK8 HMUS00385600.1 -0.49 2.32E-02

cyclin 7 HMUS00475100.1 -0.44 2.21E-02

cyclin 8 HMUS00524500.1 0.36 1.94E-02

mitochondrial DNA polymerase I protein D HMUS00617400.1 0.57 9.16E-03

cyclin 6 HMUS00719100.1 0.74 2.14E-02

cyclin 5 HMUS00580100.1 0.85 9.34E-05

CRK9 HMUS01274200.1 0.87 1.45E-03

DNA polymerase theta catalytic subunit HMUS00097200.1 1.15 1.51E-07

mitochondrial DNA polymerase I protein C HMUS00828800.1 1.25 7.27E-09

DNA polymerase kappa HMUS01207400.1 1.36 4.93E-03

CRK11 HMUS00452900.1 1.46 8.20E-04

CRK12 HMUS00986000.1 2.07 6.68E-18

https://doi.org/10.1371/journal.pgen.1008452.t006
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cycle protein 45 (CDC45), and tyrosyl-DNA phosphodiesterase-like protein. CDC45 is part of

the CMG (Cdc45�Mcm2–7�GINS) complex which functions as a helicase during DNA replica-

tion [84] and may also play a role in DNA repair [85]. Furthermore, Tyrosyl-DNA phosphodi-

esterases are involved in the repair of topoisomerase-related DNA damage [86]. These

observations indicate thatH.muscarum cells are under genotoxic stress after ingestion by D.

melanogaster.

Herpetomonas muscarum genes differentially regulated between twelve-

and eighteen-hours post-ingestion by Drosophila melanogaster
In the 23 genes found to be upregulated at 18 hours post ingestion (compared to at 12 hours,

see S23 Table) genes involved in binding to damaged DNA (OG00033330) were significantly

enriched. Only two of these transcripts were able to be assigned putative functions: eukaryotic

replication factor A and a structure-specific endonuclease. This observation provides further

evidence of genotoxic stress inH.muscarum after ingestion, as indicated by other upregulated

DNA repair genes at 12 hours post-ingestion.

The most highly upregulated transcript at 18 hours post ingestion was an orthologue of the

L.majorUDP-galactose transporter LPG5B. This protein allows import of UDP-galactose into

the golgi body where they are used to synthesize phosphoglycans. Capul et al., (2007) showed

that, in L.major, loss of LPG5B resulted in cells with defects in proteophosphoglycans (PPG)

[87]. PPGs are known virulence factors and are found in membrane bound, filamentous and

secreted forms. The viscous secreted PPG is thought to protect the L.major in the gut and may

also force the fly to regurgitate the infective Leishmania cells into the bite wounds of vertebrates.

Herpetomonas muscarum genes differentially regulated between stationary

phase in vitro culture and in-fly samples

Comparisons between stationary phase in vitro culture and in-fly samples revealed 5102 differ-

entially expressed genes (adjusted p-value < 0.05). Approximately 55% of the genes differen-

tially regulated between in vitro and in-fly samples were the same for log phase vs in-fly and

stationary phase vs. in-fly comparisons (Fig 8). However, 1639 genes were only significantly

differentially regulated in stationary phase vs in-fly comparisons (S24 Table). Genes differen-

tially regulated between log phase in vitro culture and in-fly samples have already been dis-

cussed, we will now outline the genes only differentially regulated when the transcriptomes of

stationary phase in vitro samples ofH.muscarum are compared with those after ingestion by

D.melanogaster. Of the 1639 genes, 750 had a fold change of� 2 –approximately a third of

which were upregulated inH.muscarum after ingestion by D.melanogaster.
Half of the top ten in-fly enriched transcripts were TATE (telomere associated mobile ele-

ments) DNA transposons and among the most represented Pfam hits in the fly-enriched tran-

scripts were reverse transcriptase (PF00078.27) and phage integrase (PF00589.22) domains

(S25 Table). Though TATE DNA transposons comprise 1.32% of the L.major genome, very

little is known about these transposable elements, other than that they contain a tyrosine

recombinase [88]. It is possible that these transposable elements are more mobile inH.mus-
carum cells ingested by the fly. However, we predict that the overall level of transcription of

cells in stationary phase cultures are reduced (vs. log phase, see above). As such, the compara-

tive increase in TATE transposon transcription between stationary phase cells andH.mus-
carum from Drosophilamay not be specifically a result of ingestion, but a reflection of general

transcription levels in the two groups of cells.

As previously discussed, transcripts for several proteins containing a Giardia VSP domain

are enriched in stationary phase compared to log phase in axenic culture. However, five were
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shown to be even more abundant in theH.muscarum cells ingested by D.melanogaster. Two

other putative surface antigens were also enriched in ingested H.muscarum which contained a

domain similar to Cytomegalovirus UL20A glycoprotein and the domain of unknown func-

tion DUF4148.

Transcripts encoding for putative antioxidant proteins were significantly enriched inH.

muscarum after ingestion by the fly. Enriched Pfam domains in the upregulated gene set

included thioredoxin, glutathione S-transferase and alkyl hydroperoxide reductase (AhpC)/

thiol specific antioxidant (TSA) domains. Our previous work showed that the D.melanogaster
response toH.muscarum ingestion included the production of reactive oxygen species [20], as

such the upregulation of these antioxidant proteins is likely an attempt to cope with this insect

immune response.

Conclusion

Here we have described the genome and predicted proteome of the monoxenous trypanoso-

matidH.muscarum and characterised the transcriptome of the parasite both in culture and

inside the gut of its natural host D.melanogaster.H.muscarum shows similarity in both

genome structure and content to Leishmania, with significant synteny to L.major and sharing

80% of orthogroups with other members of the subfamily Leishmaniinae. While mostHerpeto-
monas genes have orthologs in other trypanosomatids, a number of genes found elsewhere

appear to have been lost inHerpetomonas, in particular genes associated with the specialised

life stages of dixenous trypanosomatids. We might expect loss of some mammal-stage specific

genes, such as HASPs, HERPs and sphingolipid synthesis genes important in metacyclic Leish-
mania cells, but more surprising might be the loss of genes expressed in insect stages such as

BARPs and procyclins.

Fig 8. Venn diagram showing the numbers of genes differentially expressed in Herpetomonas muscarum between

two in vitro culture conditions and after ingestion by Drosophila melanogaster.

https://doi.org/10.1371/journal.pgen.1008452.g008

Herpetomonas-Leishmania parallels

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008452 November 11, 2019 26 / 38

https://doi.org/10.1371/journal.pgen.1008452.g008
https://doi.org/10.1371/journal.pgen.1008452


The transcriptome of Herpetomonas inside its insect host also showed strong parallels

with the responses of Leishmania promastigotes inside the sand fly gut, in particular both

parasites showing significant upregulation of PSAs and GP63 (this study; see ref. [37]).

These proteins have been shown to be associated with virulence in Leishmania and are

important for establishment of parasite infection in the midgut, and so for transmission. The

extensive changes in transcript abundance of genes likely to be expressed on the cell surface

during insect infections includes a number of gene families not known to be important in

dixenous trypanosomatids (e.g. related to Giardia variant surface protein) implies that a

dynamic cell surface may be a shared feature of trypanosomatid life cycles beyond dixenous

groups [89], and that even more diversity of surface proteins may be present in the monoxe-

nous trypanosomatids, supporting findings from free-living kinetoplastids. We also note

that the majority of the genes showing changes in expression later in insect infections are

hypothetical, including many hypothetical genes conserved with other trypanosomatids.

This reflects similar findings in better-studied dixenous parasites [37, 70] and highlights how

much we still have to learn about the interactions between trypanosomatids and their insect

host.

In the wild, there is little data pertaining to the percentage of sand flies with established

Leishmania infection in endemic regions. In this context, the parallel to the more accessible

Drosophila-Herpetomonas system is important, as the genetic component of the parasite that

influences midgut establishment is easier to determine. However, more work is needed to

ascertain whether genes upregulated in Leishmania and those inHerpetomonas are truly func-

tionally related. The limitation is the difference between the lifestyles of these insects. Most

strikingly, female sand flies become infected with Leishmania during blood feeding, while Dro-

sophila is never haematophagous. Nevertheless, sand flies are also plant feeders, so there is

some overlap in the ecological niche as well as in their basic biology. The presence of trypano-

somatids is another shared feature of the midgut landscape of these flies, and our data suggest

that at least some aspects of the molecular interaction between flies and trypanosomatids may

also be conserved.

Materials and methods

Herpetomonas muscarum culture

H.muscarum were cultured in supplemented BHI (3% brain heart infusion broth, 2.5mg/ml

haemin, 1% FCS) and incubated at 28˚C. For most experiments, cells were maintained in a log

phase of growth by splitting every 3 days.

Infection of D. melanogaster (see reference 20)

For each independent infection of a group of 20–30 flies, 107H.muscarum cells were harvested

from a 3 days-old culture (which showed the highest infectivity rate from our experience) and

resuspended in 500ul 1% sucrose. The parasite solution was then transferred to a 21mm What-

man Grade GF/C glass microfibre filter circle (Fisher Scientific). Circles containing the para-

site cells were placed into standard Drosophila small culture vial without any food. The flies

used in the infections were 4–5 days old before they were starved overnight. After starvation,

the flies were transferred to food vials that contained the Whatman circles with the parasite

cells. After 6h of feeding, flies were moved and reared on standard yeast/molasses medium. At

different time points post oral infection, infected flies were collected for downstream experi-

ments and frozen at -80˚C for molecular analyses.
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DNA extraction for genome sequencing

Genomic DNA was extracted from 100 million H.muscarum cells from log phase cells from in
vitro culture using the Norgen Biotek Genomic DNA extraction kit according to the manufac-

turer’s instructions.

RNA extraction for RNA-seq

8ml of H.muscarum promastigote culture at a density of 9.25 x106 cells per ml (measured by

haemocytometer) was diluted 1:40 in supplemented BHI and divided between 4 tissue culture

flasks. The immediate post-dilution density was 6.5 x105 cells per ml. The following day the

cell density was measured to be 1.18 x 106 cells per ml. 45ml was taken from each flask and the

cells pelleted by centrifugation for 10 mins at 1000xg. The supernatant was discarded and the

Norgen Biotek RNA Purification kit was (according to manufacturer’s instructions) used to

purify RNA from the cell pellet. This process was repeated for 5.3ml of the remaining culture

three days later when the cell density was 1.21x107 cells per ml. The resulting RNA was eluted

at concentrations 97–170 ng per μl with a 260/230 absorbance 1.86–2.19.

Reference genome

To produce the reference genome Illumina and Pacific Biosciences sequencing platforms were

used. For Illumina sequencing 1ug of genomic DNA was sheared into 300–500 base pair (bp)

fragments by focused ultrasonication (Covaris Adaptive Focused Acoustics technology, AFA

Inc., Woburn, USA). An amplification-free Illumina library was prepared [90] and 150 bp

paired-end reads were generated on an Illumina MiSeq following the manufacturer’s standard

sequencing protocols [91]. For the Pacific Biosciences SMRT technology, 8 μg of genomic

DNA was sheared to 20-25kb by passing through a 25mm blunt ended needle. A SMRT bell

template library was generated using the Pacific Biosciences issued protocol (20 kb Template

Preparation Using BluePippin(tm) Size-Selection System). After a greater than 7kb size-selec-

tion using the BluePippin(tm) Size-Selection System (Sage Science, Beverly, MA) the library

was sequenced using P6 polymerase and chemistry version 4 (P6C4) on 6 single-molecule

real-time (SMRT) cells [92].

The Pacific Bioscience reads were assembly with HGAP3 [93], with genome size parameter

set to 25Mb, to produce 285 contigs. The obtained assembly was then corrected with ICORN2

[94], for five iterations. Using the Argus Optical Mapping System from OpGen, an optical map

was generated from high molecular weight genomic DNA captured in agarose plugs and the

restriction enzymes KpnI and BamHI. The data was analysed with associated MapManager

and MapSolver software tools (http://www.opgen.com/products-services/argus-system). The

optical map consisted of 37–38 chromosomes with approximately half being contiguous. With

the information obtained from the optical map and REAPR [95], manual genome improve-

ment was performed on the PacBio assembly to produce a final genome assembly of 181 con-

tigs. Analysis of the frequency distribution of Kmers was performed using GenomeScope

version 1.0 [22] with the kmer frequencies estimated using Jellyfish [96] using the default

parameters suggested in the GenomeScope manual.

Transcriptomic libraries Poly-A mRNA was purified from total RNA using oligodT mag-

netic beads and strand-specific indexed libraries were prepared using the KAPA Stranded

RNA-Seq kit followed by ten cycles of amplification using KAPA HiFi DNA polymerase

(KAPA Biosystems). Libraries were quantified and pooled based on a post-PCR Agilent Bioa-

nalyzer and 75 bp paired-end reads were generated on the Illumina HiSeq v4 following the

manufacturer’s standard sequencing protocols (as above).
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Data release

All sequencing data was submitted to the European Nucleotide Archive (ENA) under acces-

sion number ERP008869.

Genome annotation

CRAM output files containing RNA sequencing reads from bothH.muscarum in vitro culture

and infected D. melanogaster were converted to fastq format and then mapped to the genome

sequence using the next generation sequencing reads alignment package HISAT2 version 2.1.0

[97]. The mapped reads from each sample were assembled into transcripts with the Cufflinks

package version 2.2.1[98] and merged to form a single transcript set for all reads. The Com-

panion annotation tool [23] was then used to generate several genome annotation files based

on the RNA sequencing transcriptomic evidence and pre-existing gene models from three

other trypanosomatids–L. braziliensis, L.major and T. brucei (individual annotation statistics

S26 Table).

Orthofinder proteome analysis

The following proteomes were inputted into the Orthofinder script; Trypanosoma brucei bru-
cei 927 v5.1 [24], Trypanosoma brucei gambienseDAL972 v3 [99], Trypanosoma congolense
IL3000 [100], Trypanosoma cruzi (CL Brener) [27], Trypanosoma evansi STIB805 [101], Try-
panosoma grayi ANR4 v1 [102], Trypanosoma rangeli SC_58 v1 [103], Trypanosoma theileri
Edinburgh [104], Trypanosoma vivax Y486 [105], Leishmania braziliensisM2903 [56], Leish-
mania donovani BPK282 v1 [105], Leishmania infantum JPCM5 [56], Leishmania major Frie-

dlin v6 [106], Leptomonas pyrrhocoris ASM129339v1 [11], Leptomonas seymori ASM129953v1

[107], Crithidia bombi [9], Crithidia expoeki [9], Crithidia fasciculata v14.0 [108], Angomonas
deanei [8], Phytomonas EM1[109] and Bodo saltans v3 [110]. Where possible the above

sequences were obtained from TriTrypDB v41 [111].

RNAseq analysis in vitro culture

CRAM output files were converted to fastq format and then mapped to the concatenated D.

melanogaster andH.muscarum genome sequences using the hisat2 [98] mapper. Mapped

reads were then counted using HTseq-count (v. 0.10.0) [112] and differential expression ana-

lysed using the DESeq2 package in R [113].

RNAseq analysis samples from whole flies

Total RNA of 8–10 flies at 6h, 12h, 18h postH.muscarum oral infection was extracted with

total RNA purification kit from Norgen Biotek following the manufacturer’s instruction. Each

time point was repeated in three independent experiments. cDNA libraries were prepared

with the Illumina TruSeq RNA Sample Prep Kit v2. All sequencing was performed on the Illu-

mina HiSeq 2000 plaftform using TruSeq v3 chemistry (Oxford Gene Technology, OGT). All

sequence was paired end and performed over 100 cycles. Read files (Fastq) were generated and

then mapped to the concatenated D.melanogaster andH.muscarum genome sequences using

the hisat2 mapper [98]. Mapped reads were then counted using HTseq-count (v. 0.10.0) [112]

and differential expression analysed using the DESeq2 package in R [113].
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S2 Fig. Principal component analysis of differentially expressed H. muscarum genes in log
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cled) which correspond to RNA each condition (n = 3 per condition). Dark blue = log phase

samples and light blue = stationary phase samples.
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S14 Table. H. musccarum proteins orthologous to important T. brucei proteins: Exosome-

associated proteins.
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S20 Table. Significantly enriched Pfam domains in differentially regulated Herpetomonas
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nic culture). The table shows the top 10 represented Pfam domains in the significantly up-

and downregulated genes. Chi-squared tests were performed to test for statistically significant

enrichment of the Pfams frequency in upregulated genes vs. the Pfams in the whole genome.

(XLSX)

S21 Table. Structural predictions for differentially expressed H. muscarum surface pro-

teins. Structural predictions were acquired using the TMHMM1.0 online tool (Krogh et al.,

2001).
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(XLSX)
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2. Zı́dková L., Cepicka I., Votypka J., Svobodová M. 2010. Herpetomonas trimorpha sp. nov. (Trypano-

somatidae, Kinetoplastida), a parasite of the biting midge Culicoides truncorum (Ceratopogonidae,

Diptera). International Journal of Systematic and Evolutionary Microbiology. 60(9): pp. 2236–2246.

3. Rowton E. D. and Barclay McGhee R. (1978) ‘Population Dynamics of Herpetomonasampelophilae,

with a Note on the Systematics of Herpetomonas from Drosophila spp.’, The Journal of Protozoology.

John Wiley & Sons, Ltd (10.1111), 25(2), pp. 232–235. https://doi.org/10.1111/j.1550-7408.1978.

tb04402.x

4. Lange C. E., and Lord J. (2012). “Protistan entomopathogens,” in Insect Pathology, 2nd Edn., eds

Vega B. and Kaya H.( Amsterdam: Elsevier), 367–394. https://doi.org/10.1016/B978-0-12-384984-7.

00010–5

5. Vega F. E. and Kaya H. K. 2012. Insect Pathology. Second Edition. Academic Press. Amsterdam

(The Netherlands) and Boston (Massachusetts). Elsevier. ISBN: 978-0-12-384984-7.

6. Erwin T. L. 1983. Tropical forest canopies: the last biotic frontier. Bulletin of the Entomological Society

of America, Volume 29: 14–19.

Herpetomonas-Leishmania parallels

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008452 November 11, 2019 32 / 38

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008452.s028
https://doi.org/10.1590/s0074-02761998000400021
http://www.ncbi.nlm.nih.gov/pubmed/9711346
https://doi.org/10.1111/j.1550-7408.1978.tb04402.x
https://doi.org/10.1111/j.1550-7408.1978.tb04402.x
https://doi.org/10.1016/B978-0-12-384984-7.000105
https://doi.org/10.1016/B978-0-12-384984-7.000105
https://doi.org/10.1371/journal.pgen.1008452


7. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, et al. (2017) More than 75 percent decline

over 27 years in total flying insect biomass in protected areas. PLOS ONE 12(10): e0185809. https://

doi.org/10.1371/journal.pone.0185809 PMID: 29045418

8. Motta M. C. M., Martins A. C., de Souza S. S., Catta-Preta C. M., Silva R., Klein C. C., de Almeida L.

G., de Lima Cunha O., Ciapina L. P., Brocchi M. 2013. Predicting the Proteins of Angomonas deanei,

Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosoma-

tidae Family. PLoS ONE. 8(4): e60209. https://doi.org/10.1371/journal.pone.0060209 PMID:

23560078

9. Schmid-Hempel P. et al. (2018) ‘The genomes of Crithidia bombi and C. expoeki, common parasites

of bumblebees’, PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0189738 PMID: 29304093

10. Runckel C., DeRisi J., Flenniken M. L. 2014. A draft genome of the honey bee trypanosomatid parasite

Crithidia mellificae. PLoS ONE, 9(4).

11. Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M. C., Filatov D., Flegontova O., Gerasi-
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Votýpka J. 2016. Diversity of Trypanosomatids in Cockroaches and the Description of Herpetomonas

tarakana sp. n.’, Journal of Eukaryotic Microbiology. 63(2): pp. 198–209. https://doi.org/10.1111/jeu.

12268 PMID: 26352484

29. Jackson A. P., Vaughan S. and Gull K. (2006) ‘Evolution of Tubulin Gene Arrays in Trypanosomatid

parasites: genomic restructuring in Leishmania’, BMC Genomics. London: BioMed Central, 7, p.

261. https://doi.org/10.1186/1471-2164-7-261 PMID: 17044946

30. Emms D. and Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons

dramatically improves orthogroup inference accuracy. Genome Biology. 16(157).

31. Sutterwala S. S., Hsu F., Sevova E. S., Schwartz K. J., Zhang K., Key P., Turk J., Beverley S. M.,

Bangs J. D. 2008. Developmentally regulated sphingolipid synthesis in African trypanosomes. Molecu-

lar Microbiology, 70: pp. 281–296. https://doi.org/10.1111/j.1365-2958.2008.06393.x PMID:

18699867

32. Zhang K., Showalter M., Revollo J., Hsu F. F., Turk J., Beverley S. M. 2003. Sphingolipids are essen-

tial for differentiation but not growth in Leishmania. EMBO J., 22: pp. 6016–6026. https://doi.org/10.

1093/emboj/cdg584 PMID: 14609948

33. Vanlerberghe G. C. and McIntosh L. (1997) ‘Alternative Oxidase: From Gene to Function’, Annual

Review of Plant Physiology and Plant Molecular Biology. Annual Reviews, 48(1), pp. 703–734.

https://doi.org/10.1146/annurev.arplant.48.1.703 PMID: 15012279

34. Jackson A. P. 2007. Origins of amino acid transporter loci in trypanosomatid parasites. BMC evolution-

ary biology, 7, 26. https://doi.org/10.1186/1471-2148-7-26 PMID: 17319943

35. Shaked-Mishan P., Suter-Grotemeyer M., Yoel-Almagor T., Holland N., Zilberstein D. and Rentsch D.

2006. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania dono-

vani. Molecular Microbiology, 60: pp. 30–38. https://doi.org/10.1111/j.1365-2958.2006.05060.x

PMID: 16556218

36. Martin J. L. et al. (2014) ‘Metabolic reprogramming during purine stress in the protozoan pathogen

Leishmania donovani’, PLoS pathogens. Public Library of Science, 10(2), p. e1003938. https://doi.

org/10.1371/journal.ppat.1003938 PMID: 24586154

37. Inbar E., Hughitt V. K., Dillon L. A. L., Ghosh K., El-Sayed N. M. and Sacks D. L. 2017. The Transcrip-

tome of Leishmania major Developmental Stages in Their Natural Sand Fly Vector, mBio, 8(2).

https://doi.org/10.1128/mBio.00029-17 PMID: 28377524

38. Kolev N. G., Ullu E. and Tschudi C. (2014) The emerging role of RNA-binding proteins in the life cycle

of Trypanosoma brucei. Cellular microbiology 16(4): 482–489. https://doi.org/10.1111/cmi.12268

PMID: 24438230

39. Naguleswaran A., Gunasekera K., Schimanski B., Heller M., Hemphill A., Ochsenreiter T. and Roditi I.

(2015) Trypanosoma brucei RRM1 Is a Nuclear RNA-Binding Protein and Modulator of Chromatin

Structure. mBio 6(2): e00114–15. https://doi.org/10.1128/mBio.00114-15 PMID: 25784696

40. Wippel H. H., Malgarin J. S., Martins S. de T., Vidal N. M., Marcon B. H., Miot H. T., Marchini F. K.,

Goldenberg S. and Alves. (2019) The Nuclear RNA-binding Protein RBSR1 Interactome in Trypano-

soma cruzi. Journal of Eukaryotic Microbiology. John Wiley & Sons, Ltd

41. Wurst M., Seliger B., Jha B. A., Klein C., Queiroz R., Clayton C. Expression of the RNA recognition

motif protein RBP10 promotes a bloodstream-form transcript pattern in Trypanosoma brucei. Mol

Microbiol. 2012; 83:1048–1063.1111) 66(2): 244–253. https://doi.org/10.1111/j.1365-2958.2012.

07988.x PMID: 22296558

42. Jones N. G. et al. (2014) ‘Regulators of Trypanosoma brucei cell cycle progression and differentiation

identified using a kinome-wide RNAi screen’, PLoS pathogens. Public Library of Science, 10(1), pp.

e1003886–e1003886. https://doi.org/10.1371/journal.ppat.1003886 PMID: 24453978

43. Acosta-Serrano A. et al. (2001) ‘The surface coat of procyclic Trypanosoma brucei: Programmed

expression and proteolytic cleavage of procyclin in the tsetse fly’, Proceedings of the National Acad-

emy of Sciences. National Academy of Sciences, 98(4), pp. 1513–1518. https://doi.org/10.1073/pnas.

041611698 PMID: 11171982

44. Haines L. R. et al. (2010) ‘Tsetse EP protein protects the fly midgut from trypanosome establishment’,

PLoS pathogens. Public Library of Science, 6(3), pp. e1000793–e1000793. https://doi.org/10.1371/

journal.ppat.1000793 PMID: 20221444

45. Pimenta P. F. et al. (1992) ‘Stage-specific adhesion of Leishmania promastigotes to the sandfly mid-

gut’, Science, 256(5065), pp. 1812 LP–1815. https://doi.org/10.1126/science.1615326 PMID:

1615326

Herpetomonas-Leishmania parallels

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008452 November 11, 2019 34 / 38

https://doi.org/10.1126/science.1112181
http://www.ncbi.nlm.nih.gov/pubmed/16020724
https://doi.org/10.1111/jeu.12268
https://doi.org/10.1111/jeu.12268
http://www.ncbi.nlm.nih.gov/pubmed/26352484
https://doi.org/10.1186/1471-2164-7-261
http://www.ncbi.nlm.nih.gov/pubmed/17044946
https://doi.org/10.1111/j.1365-2958.2008.06393.x
http://www.ncbi.nlm.nih.gov/pubmed/18699867
https://doi.org/10.1093/emboj/cdg584
https://doi.org/10.1093/emboj/cdg584
http://www.ncbi.nlm.nih.gov/pubmed/14609948
https://doi.org/10.1146/annurev.arplant.48.1.703
http://www.ncbi.nlm.nih.gov/pubmed/15012279
https://doi.org/10.1186/1471-2148-7-26
http://www.ncbi.nlm.nih.gov/pubmed/17319943
https://doi.org/10.1111/j.1365-2958.2006.05060.x
http://www.ncbi.nlm.nih.gov/pubmed/16556218
https://doi.org/10.1371/journal.ppat.1003938
https://doi.org/10.1371/journal.ppat.1003938
http://www.ncbi.nlm.nih.gov/pubmed/24586154
https://doi.org/10.1128/mBio.00029-17
http://www.ncbi.nlm.nih.gov/pubmed/28377524
https://doi.org/10.1111/cmi.12268
http://www.ncbi.nlm.nih.gov/pubmed/24438230
https://doi.org/10.1128/mBio.00114-15
http://www.ncbi.nlm.nih.gov/pubmed/25784696
https://doi.org/10.1111/j.1365-2958.2012.07988.x
https://doi.org/10.1111/j.1365-2958.2012.07988.x
http://www.ncbi.nlm.nih.gov/pubmed/22296558
https://doi.org/10.1371/journal.ppat.1003886
http://www.ncbi.nlm.nih.gov/pubmed/24453978
https://doi.org/10.1073/pnas.041611698
https://doi.org/10.1073/pnas.041611698
http://www.ncbi.nlm.nih.gov/pubmed/11171982
https://doi.org/10.1371/journal.ppat.1000793
https://doi.org/10.1371/journal.ppat.1000793
http://www.ncbi.nlm.nih.gov/pubmed/20221444
https://doi.org/10.1126/science.1615326
http://www.ncbi.nlm.nih.gov/pubmed/1615326
https://doi.org/10.1371/journal.pgen.1008452


46. Kamhawi S. et al. (2004) ‘A role for insect galectins in parasite survival.’, Cell. United States, 119

(3), pp. 329–341.

47. Urwyler S., Studler E., Renggli C. K., Roditi I. 2007. A family of stage-specific alanine-rich proteins on

the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol., 63: pp. 218–228 https://doi.

org/10.1111/j.1365-2958.2006.05492.x PMID: 17229212

48. Fragoso C. M., Schumann Burkard G., Oberle M., Renggli C. K., Hilzinger K., Roditi I. 2009. PSSA-2,

a Membrane-Spanning Phosphoprotein of Trypanosoma brucei, Is Required for Efficient Maturation of

Infection. PLoS ONE, 4(9):e7074 https://doi.org/10.1371/journal.pone.0007074 PMID: 19759911
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J., Volf P., Opperdoes F., Flegontov P., Lukeš J., Yurchenko V. 2015. Leptomonas seymouri: Adapta-

tions to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-

infection with Leishmania donovani. PLoS Pathog., 11(8):e1005127. https://doi.org/10.1371/journal.

ppat.1005127 PMID: 26317207

108. Runckel C., DeRisi J., & Flenniken M. L. (2014). A draft genome of the honey bee trypanosomatid par-

asite Crithidia mellificae. PloS one, 9(4), e95057. https://doi.org/10.1371/journal.pone.0095057

PMID: 24743507

109. Porcel B. M., Denoeud F., Opperdoes F., Noel B., Madoui M-A., Hammarton T. C., Field M. C., Da

Silva, Couloux A., Poulain J., et al. 2014. The streamlined genome of Phytomonas spp. relative to

human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS genetics. e1004007.

https://doi.org/10.1371/journal.pgen.1004007 PMID: 24516393

110. Jackson A. P., Quail M. A., Berriman M. 2008. Insights into the genome sequence of a free-living Kine-

toplastid: Bodo saltans (Kinetoplastida: Euglenozoa). BMC Genomics. 9(9):594.

111. Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B. P., Carrington M., Depledge D. P.,

Fischer S., Garjria B., Gao X., et al., 2010. TriTrypDB: a functional genomic resource for the Trypano-

somatidae. Nucleic Acids Research. 38(37): D457–D462

112. Anders S., Pyl P. T. and Huber W. 2015. HTSeq—a Python framework to work with high-throughput

sequencing data. Bioinformatics, 31(2): pp. 166–169. https://doi.org/10.1093/bioinformatics/btu638

PMID: 25260700

113. Love M. I., Huber W., Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-

seq data with DESeq2. Genome Biology, 15: pp. 550. https://doi.org/10.1186/s13059-014-0550-8

PMID: 25516281

Herpetomonas-Leishmania parallels

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008452 November 11, 2019 38 / 38

https://doi.org/10.1371/journal.pntd.0003176
http://www.ncbi.nlm.nih.gov/pubmed/25233456
https://doi.org/10.1093/gbe/evx152
http://www.ncbi.nlm.nih.gov/pubmed/28903536
https://doi.org/10.1101/gr.123430.111
http://www.ncbi.nlm.nih.gov/pubmed/22038251
https://doi.org/10.1126/science.1112680
http://www.ncbi.nlm.nih.gov/pubmed/16020728
https://doi.org/10.1371/journal.ppat.1005127
https://doi.org/10.1371/journal.ppat.1005127
http://www.ncbi.nlm.nih.gov/pubmed/26317207
https://doi.org/10.1371/journal.pone.0095057
http://www.ncbi.nlm.nih.gov/pubmed/24743507
https://doi.org/10.1371/journal.pgen.1004007
http://www.ncbi.nlm.nih.gov/pubmed/24516393
https://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1371/journal.pgen.1008452

