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Abstract

Background
Guinea worm (Dracunculus medinensis) was detected in Chad in 2010 after a supposed ten year
absence, posing a challenge to the global eradication effort. Initiation of a village-based surveil-
lance system in 2012 revealed a substantial number of dogs infected with Guinea worm, raising
questions about paratenic hosts and cross-species transmission.

Methodology/Principal Findings
We coupled genomic and surveillance data from 2012-2018 cases to investigate the modes of
transmission between hosts and the geographic connectivity for genetically similar worm pop-
ulations. Eighty-six variants across three loci on the mitochondrial genome identified 41 genet-
ically distinct worm genotypes. Spatiotemporal modeling reveals genetically identical worms
are within a median range of 18.6 kilometers of each other, but largely within approximately 50
kilometers. Genetically identical worms vary in their degree of spatial clustering, suggesting
there may be different factors that favor or constrain transmission. Each worm is surrounded
by five to ten genetically distinct worms within a 50 kilometer radius. In an independent pop-
ulation, we show that more variants revealed in whole mitochondrial genome data improved
the discrimination between worm pairs.

Conclusions/Significance
In the largest study linking genetic and surveillance data to date of Guinea worm cases in
Chad, we show genetic similarity and modeling can contribute to understanding local trans-
mission. The overlap of genetically distinct worms in quantitatively identified transmission
ranges highlights the necessity for genomic tools to link cases. The improved discrimination
between worm pairs from variants identified across the complete mitochondrial genome in-
dicates expanding genomic markers could link cases at a finer scale. These results suggest
that scaling up genomic surveillance for Guinea worm may provide additional value for pro-
grammatic decision-making critical for monitoring cases and intervention efficacy to achieve
elimination.
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1 Introduction

The eradication campaign for dracunculiasis, Guinea worm disease, has made substantial progress
since the first set of World Health Assembly resolutions aimed at elimination efforts passed dur-
ing the International Drinking Water Supply and Sanitation Decade (1981-1990) [8]. The Guinea
worm eradication campaign has decreased the global burden of disease by more than 99% [28],
enabled the World Health Organization (WHO) to certify 187 countries as free from endemic Dra-
cunculiasis transmission [3], and decreased the significant economic loss in rural settings [8]. De-
spite the substantial progress, endemic transmission has persisted in Angola, Chad, Ethiopia,
Mali, and South Sudan [28]. In Chad, a decade long absence of reported cases was interrupted
with a detected resurgence of Guinea worm cases in 2010 [45]; moreover, human cases continue
to be reported [2] with a growing understanding of the role of animal reservoirs in transmis-
sion [10, 19, 38, 12, 47]. The stalled progress in Chad has led to a substantial increase in surveillance
and programmatic efforts [1] as well as investments in research and novel interventions [18, 24].

Genetic sequencing is an important tool for the control of other pathogens. In the case of
polio eradication, for example, these tools have been used to detect silent transmission across
geographic areas and thus inform programmatic decision-making [39, 14, 23]. The inclusion of
strain differentiation techniques into programmatic decision-making for poliomyletis is feasible
due to the continual mutation events in the virus genome, a growing global library of samples
and isolates, and a mature set of mathematical and statistical methodologies to track specific lin-
eages. For parasites, such as Guinea worm, well-established phlyogenetic methodologies to infer
high-fidelity ancestry and lineages do not yet exist [47, 15]. Nonetheless, genetic data collected
from Guinea worms in Chad has already revealed research and programmatically relevant in-
sights: human and dog hosts share a common genetic population suggesting transmission be-
tween species [47]. Genome wide data from a much smaller sample of worms confirms this find-
ing [18]. We build upon those research insights using linked genetic and surveillance data from
Chad to investigate the geographic connectivity of genetically defined worm populations.

Spatial epidemiological models have been a key tool for inferring the connectivity of different
populations and providing insights into the propagation of infectious diseases. Spatial models,
such as the gravity [48] and Lev́y flight [7], have been utilized to describe the movement of hu-
mans and animals as a key component to the spread of infectious diseases [9, 43, 6, 52, 30, 50, 29].
These models and sophisticated inference algorithms have helped characterize the movement of
pathogens and provide insights for programmatic decision-making [33, 5]. Genetic data has the
potential to bypass the need for proxy human movement data by directly using the movement
of pathogens via the genetic linkage and geographic metadata [32] even in a partially sampled
transmission network [26, 17, 23]. Using genetic and epidemiological data to inform infectious
disease models is a growing field, which encompasses phylodynamics [41, 53, 40, 42]. Similar to
phylogenetic methodologies, phylodynamic analyses and models are most mature for virus and
bacteria pathogens [31, 33, 23, 26, 17]. However, there have been recent innovations of using the
biological characteristics of parasites clonally propagating in order to build phylodynamic models
of malaria parasite movement within neighborhoods of Thiés, Senegal [4]. We demonstrate that
probabilistic spatial models informed by Guinea worm genetic data can reveal new insights into
the geographic connectivity of worm populations in Chad.

In this article, we investigate the programmatic potential of leveraging genetic data for en-
hanced surveillance efforts by performing a retrospective analysis and modeling of the epidemi-
ological and genomic data collected in Chad from 2012-2018, excluding 2014. We leverage both
previously reported [47] and new genetic sequences linked with surveillance data to build spatial
models that reveal a consistent geographic connectedness of worm populations in Chad. We also
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Figure 1: Characteristics of genetically characterized Guinea worm cases in Chad from 2012-
2018. A.) Number of cases per host species collected from 2012-2018, with GPS matched sample
distributions across the Chari River. B.) The number of GPS matched samples that belong to
barcode sets. Note, not all barcode colors are show in the left figure. Barcodes with less than 10
samples in the population are colored in light grey for visual clarity. C.) Samples belonging to
barcode sets 2, 3 and 4 are shown in their respective ranges. Smoothed kernel densities for the
three barcode sets show the mass of the distributions correlate with the spatial connectedness of
samples.

demonstrate the additional value of expanding the number of loci sequenced for Guinea worm
in order to provide higher resolution in linkages between samples. These results are followed by
a discussion on the implications of increasing the scope of genetic sequencing for programmatic
surveillance and decision-making.
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Materials and methods

1.1 DNA extraction and sequencing

Extraction was attempted on 712 worms collected in Chad from 2012-2018, excluding samples
from 2014 due to availability. Whole genomic DNA was extracted from 5-15mm sections of adult
female worm tissue with one of two methods: a modified Puregene DNA extraction protocol as
detailed in Thiele et al. 2018 [47], or with the DNeasy Blood and Tissue Kit (Qiagen, German-
town, MD, #69582) according to the manufacturer’s protocol for tissue extraction. Five hundred
and ninety-five samples were successfully sequenced for at least one locus on the mitochondria
genome. Sanger sequencing and base calls were performed as detailed in [47]. There are 461 sam-
ples with all three targeted loci (CO3, cytB, and ND3-5) in our study. Thirty three of these samples
overlapped with previous studies on genomic characterization in Chadian Guinea worms. [47].
The remaining 428 samples have not been published previously.

1.2 Alignment and variant identification

1.2.1 Targeted CO3, cytB, ND3-5 loci

Sequences of targeted loci were aligned to the Dracunculus medinensis mitochondria genome ver-
sion JN555591.1 from the European Nucleotide Archive with the BWA v0.7.17 software pack-
age [35]. Genomic ranges for each locus were determined from the start and end positions of all
samples. Ranges were 3, 690-4, 308 for CO3, 2, 628-3, 234 for cytB, and 12, 562-14, 523 for ND3-5.
Four hundred and sixty-one samples with successful alignment at each locus were considered for
variant discovery. Alleles (A, C, G, T, or missing) were counted for each position in the identified
ranges. To avoid artifacts from poor sequencing or alignment, singleton variants were recorded
with their respective sample. Two samples with inflated singleton counts in cytB and ND3-5 were
excluded from this study. Singleton variants identified in these two samples were excluded. Six
singleton variants were identified in non-excluded samples. Remaining variants were retained if
a position was missing a base call for at most one sample. Four samples had a missing position in
retained variants. These criteria identified 86 variant positions concatenated to create a molecular
barcode. Forty-one unique barcodes were identified across 459 worms. Barcodes were assigned
an identifying number based on the number of samples belonging to each barcode.

1.2.2 Untargeted complete mitochondria genome

Nineteen publicly available, untargeted mitochondria DNA sequences were downloaded from
the European Nucleotide Archive [18]. Low quality bases with a minimum mapping quality of 20
were trimmed from the ends of reads. Trimmed reads were aligned to the D. medinensis mitochon-
dria genome with the BWA v0.7.17 software package [35]. Variants were called on aligned reads
following best practices outlined by GATK v4.1.4. Known variants are typically recommended to
correct sequencing errors that lead to spurious variant calls. A set of known variants is not avail-
able for the D. medinensis mitochondria genome. Instead, bootstrap base recalibration was done
using higher confidence calls (QD >2.0, FS >60.0, MQ <40.0, MQRankSum <−12.5, ReadPos-
RankSum <−8.0) until the final calls converged (2-3 steps) [49]. Final variants were filtered using
the following input parameters for GATK: FS <= 13.0 or missing, SOR <3.0 or missing, and −3.1
<= ReadRankPos, BaseQRankSum, MQRankSum, ClippingRankSum <= 3.1 [18]. Given the low
sample size for recalibration, orthogonal variant calling was performed using the bcftools pro-
gram [34]. Genotype maximum likelihoods were determined using the mpileup command with
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parameters specifying a minimum mapping quality of 20 and ploidy of 1. For both variant call
sets, variants found within positions 5950-6670 were removed due to high heterozygosity and 2×
mapping coverage. For all other variants, a minimum depth of 10 reads was required across all
samples to be included in downstream analyses.

1.3 Phylogenetic analysis of worms collected from humans and dogs

Phylogenetic trees were constructed using the ultrametric unweighted pair group method with
arithmetic mean (UPGMA) [37]. We assumed that worms were evolving at similar rates and each
base frequency is equally likely at each position. Jukes Cantor distance, the simplest substitu-
tion model meeting our assumptions, was used to calculate genetic distance between barcodes.
Samples were clustered using agglomeration by average distance. Genetic distance and UPGMA
clustering were calculated with R package phagorn v2.5.5 [44].

1.4 Linking genomic samples to epidemological data

We linked the sequenced samples with corresponding surveillance data using national case re-
ports and standardized surveys, described in detail in [25]. Case data was collected from an active
and passive village-based surveillance system by the Chad Guinea Worm Eradication Program
(CGWEP) and the Ministry of Public Health (MOHP) [21]. Summary case reports at the village
level are compiled across surveillance sites by the CGWEP program. Information on infected
dogs was collected through a standardized survey with the self-identified owner. Where avail-
able, global position system (GPS) coordinates from the standardized surveys were validated with
village coordinates from the national case reports. The GPS coordinates were consistent across na-
tional case reports and standardized surveys for 207 samples. In instances where coordinates
differed between the standardized surveys and the national case report, the national case report
coordinates were assigned (181 samples). For cases reported with a village name in the standard-
ized survey but without GPS coordinates, the GPS coordinates associated with the village name in
the national case report was assigned to that sample (2 samples). For cases reported with a village
name and GPS coordinates, but the village name was not in the national case report, standardized
survey case coordinates was assigned to that sample (37 samples). Four hundred and twenty-six
worms were linked across 245 hosts. Sixty-five of the 245 hosts were infected by more than one
worm. Multi-infected hosts had an median of four parasites, however, up to 24 parasites in a
single host were observed.

1.5 Probabilistic spatial models of Guinea worm connectivity

1.5.1 Spatial models

Spatial movement models have demonstrated that distance is an important factor influencing the
spread of pathogens. [52, 43, 6, 26]. Here, due to the yearly transmission cycle of the Guinea worm
parasite [8], we specify a spatial model similar to a probabilistic diffusion model for a discrete
spatial network representing the villages affected by Guinea worm in Chad. The model describes
the probability of a worm being transmitted from village i to village j based on pairwise genetic
similarities f and distance between pairs d such that pij = Cif(dij) where Ci is a scaling factor and
f is a data-driven, empirical form directly computed from the Guinea worm data from Chad. Sim-
ilar to other parametric formulations such as the diffusion, gravity [6], or Lévy flight models [26],
our non-parametric formulation could be used to predict where a future linked Guinea worm case
might appear.
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1.5.2 Pairwise genetic similarity and distance between samples

To infer the functional form of f in the model above, we utilize the genetic similarity between sam-
ples and the associated GPS coordinates for villages. The genetic similarity is calculated for each
unique worm pair as 1 - (number of discordant bases between barcodes/total number of bases
compared); this similarity metric accounts for samples having a different number of resolved
bases. Discordant bases were equally penalized (−1) regardless of the base. Without a known
organismal mutation rate, we assume a similar mutation rate as the Caenorhabditis elegans spon-
taneous mitochondrial mutation rate estimated at 1.05e − 7 site/generation [16]. From this rate,
we expect 0.0015 mutations for the 14,628 base pair Dracunculus medinensis mitochondrial genome
between generations. We have 86 variant sites across 459 worms, suggesting an average of 0.187
mutations per sample in the population. Both the average mutation per sample and the extrapo-
lated mutation per generation from the C. elegans rate, are less than one, indicating a single base
pair is sufficient to distinguish barcode sets. For computing the geographic distance between each
pair of samples d, we used the haversine distance as implemented in the R package geosphere
v1.5 [27].

Partitioning samples according to genetic similarity requires caution. Even grouping samples
that are different by one base pair, either from a real mutation or sequencing error, creates an al-
gorithmic issue. For example, if a genetic sequence that is one base pair different from two other
sequences, but the discordance is at different base pair positions, then this three sample group
would not be a single base pair different for all pairwise comparisons. In this work, we enforce
that the groupings maintain the required base-pair differences by only including the pairwise
comparisons that satisfy the requirement; note that this is different than grouping all of the sam-
ples with a base-pair discordance and then performing all of the pairwise comparisons. We use
these relaxed similarity thresholds to identify shared identity between barcode pairs to investigate
the impact of geographic clustering (§1.5.4).

1.5.3 Spatial models by molecular barcode sets

To characterize the functional form f , we partition the samples according to their genetic similar-
ity. Samples that are identical are grouped into molecular barcodes; for each barcode k, all of the
pairwise distances within the set are used to compute a barcode functional form fk. The set of
functions fk are then averaged to produce a single f . We also investigated the impact of partition-
ing samples with a less restrictive criteria based on the assumed mutation rate as described above.
Similar to research in the comparison of power-law distributions [11], we utilize the empirical
cumulative densities f using stat ecdf and compare distributions using the Kolmogorov-Smirnov
test with base R v3.6.3 [46]. We plot the empirical distributions as smoothed kernel density distri-
butions using the function stat density contained in the R package ggplot2 v3.3.0 [51].

1.5.4 Sensitivity analyses

We investigated the results by performing a series of sensitivity analyses including statistical boot-
strapping. Distance permutations between worms pairs included 100 iterations of sampling with-
out replacement for the distance vector. Multi-infected host bootstrap subsampling included 100
iterations of choosing a single case worm at random for each host. In instances where only one
case is observed per host, that case was consistently the representative. Each iteration was con-
sidered an independent distribution and analyzed as described above. In addition, we also tested
the impact of relaxed similarity thresholds for defining matched identity of the molecular barcodes
between pairs on the geographic clustering.
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1.5.5 Analyzing the diversity of genetic samples by geography

Population worm cases (425) were ordered by ascending distance in reference to a single worm
case, herein referred to as the index worm for each sample comparison. Cumulative barcode
diversity scores were calculated for each worm in the study as the index case. Each worm case
barcode that did not match the index case augmented the barcode diversity by one. When two
worms were equidistant from the index case, the highest cumulative score was used as the barcode
diversity for that distance metric. We also investigated the effect of opportunistic sampling on
barcode geographic clustering by comparing the cumulative distance from an index case to every
other worm in the population. From each index case, we expect the number of samples to increase
at variable rates depending on sample clusters. Deviations from an increase (a sustained flat line)
between samples would indicate geographic breaks between sample clusters.

1.6 Analyzing sensitivity of additional loci outside of CO3, cytB, and ND3-5

Variants were considered to be within loci if found within the gene ranges provided by Plas-
moDB for each gene; CO3 (3, 788-4, 534), cytB (2, 628-3, 345), and ND3-5 (12, 562-14, 566). Note,
these mitochondrial coordinates slightly differed from the ranges identified by target loci sequenc-
ing. Pairwise genetic similarity was calculated from barcodes created with all variants, variants
within loci, or variants outside of loci as described in the previous section. For bootstrap subsam-
pling tests, variants outside of loci ranges were randomly selected to contain the same number
of variants found within loci to create a new barcode for genetic similarity comparisons. Genetic
similarity tests for the different regions were robustly tested across two variant calling pipelines
(GATK and bcftools mpileup, see DNA alignment and variant calling) with all variants and sin-
gletons excluded. Smooth kernel density distributions were generated with ggplot2 v3.3.0 option
”stat density”. A two sided Kolmogorov-Smirnov test was used to compare genetic similarity
distributions of different loci classes with base R v3.6.3 [46].

Results

1.7 Genetic and epidemiological characteristics of Guinea worm cases.

Four hundred and fifty-nine worms (30 humans hosts, 429 dog hosts) collected from 2012-2018
were successfully sequenced (Fig 1A). Four hundred and twenty-six of successfully sequenced
worms were matched to case coordinates. Worm cases mainly clustered along the Chari River
(Fig 1A). Identical mitochondrial sequences were observed for cases across years (Fig 1B). Eighty
six variants were identified in the CO3, cytB, and ND3-5 loci of 618, 606, and 1, 961 base pairs,
respectively. The concatenation of the 86 variants resulted in 41 unique molecular barcodes (S1
Table). Barcode accumulation curves suggest the 41 barcodes in this study are not saturating the
potential diversity of the unobserved population given the proportion of low frequency barcodes
in the observed population. We studied the discovery of new barcodes beyond the 41 observed
with extrapolations up to 5000 samples using a standard negative binomial and a statistical, em-
pirical Bayes approach [22]. The negative binomial procedure suggests we may observe 40 addi-
tional barcodes and the empirical Bayes approach suggests we may observe up to 15 additional
barcodes for a sampled population size of 5000. Despite the differences between methods, both
indicate that modestly increasing the number of samples sequenced is not likely to capture the
complete underlying genetic diversity. Moreover, both methods indicate extrapolating to an even
larger number of sequenced samples, 5000 or larger, may not be enough due to the abundance of
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low-frequency barcodes in the sampled population. However, the extrapolation is hindered by the
available data; see S1 Appendix for further methodological details and numerical investigations.

1.8 Phylogenetic similarity between host species.

There is not a consistent trend of interspecies transmission for barcodes shared across host species.
Phylogenetic analysis of all available Guinea worm barcodes collected from humans and dogs
identifies clades of repeated or highly similar barcodes. Twelve of the 41 identified barcodes are
shared between human and dog hosts. There is no clear signal of unilateral transmission between
host species (S1 Fig). Barcodes were equally likely to appear in both species at the same time
(barcodes 2, 6, 8, 10, 36), dogs a year prior to humans (Barcodes 5, 7, 21), or in humans a year
prior to dogs (Barcodes 3, 4, 13, 14). There are more unique dog barcodes driven by the high
number of reported cases in dogs (Fig 1A); however, barcodes found exclusively in one species do
not form separate clades. The average nucleotide similarity (π) between human and dog barcodes
ranged from 0.6-1.0, similar to within host nucleotide similarity ranges. Human samples are the
sole genetic representative for 2012, 2013, and 2018 cases with 1, 2, and 11 samples. Only four
barcodes from this set (7, 21, 40 and 41) were observed as a singular event.

1.9 Genetically identical worms are geographically clustered.

1.9.1 Population level comparisons

Pairwise genetic similarity scores for all worms with GPS data available reveals genetically iden-
tical barcodes are spatially clustered in Chad. Identical barcodes are within a median 18.6 kilome-
ter range (standard deviation = 82.5 kilometers), and often within an approximately 50 kilometer
radius (Fig 2A). Non-identical barcodes were more evenly distributed within a median 222.2 kilo-
meters (standard deviation = 157.5 kilometers), however spread across a 400 kilometer radius,
with slight inclination to be clustered within 100 kilometers or 400 kilometers (Fig 2A). The spatial
distributions between identical and non-identical barcode distributions are statistically different
(Kolmogorov–Smirnov test, p < 0.001). Reclassifying worm pairs with a single nucleotide dif-
ference to account for potential elevated mutation rates or a sequencing mutation as identical
robustly replicated geographical clustering within a 50 kilometer radius (S2 Fig). Permuting the
distance between worm pairs removed spatial clustering for identical worms (S3 Fig).

Geographic clustering of barcodes is not due solely to the similarity of parasites within hosts
that carry multiple infections. Sixty-five of the 245 hosts had multiple worm infections, with a
median of 4 worms (range = 2-24) per multi-infected host (S4 Fig). Worms captured from the
same host were not always genetically identical. The distribution of genetic similarity for worms
with the same host did not differ from worms with the same GPS coordinates from different hosts
(S4 Fig). Bootstrap subsampling of a single worm from each host maintained spatial clustering
with low variability (S5 Fig).

1.9.2 Individual barcode comparisons

Individual barcodes show variation in their geographical range (Fig 2B). For example in Fig 1C,
cases with Barcode 2 are found in the southeast mouth of the Chari River, while cases with Barcode
3 and 4 are spread along the entire river. The geographic range for samples in each common
barcode can be seen in S6 Fig. We replicated the smooth kernel density estimates for 10 of the 38
barcodes; note that three of the barcodes do not contain associated GPS locations for any sample.
The geographic variability is not dependent on the total number of worms assigned to a barcode
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Figure 2: Distance density estimates of pairwise similarity for identical and non-identical bar-
codes. A.) Pairwise comparisons of identical barcodes in black (n=10, 695) to a null of non-identical
barcodes in grey (n=79, 830). This distrubtion at 400 kilometers is the max distance between sam-
pled cases along the Chari River. This enrichment of pirwise sample distance around 400 kilome-
ters should not be considered the transmission upperbound. B.) The number of comparisons for
each barcode are the unique pairs of all worms sharing that barcode identifier. The null distri-
bution in grey of non-identical barcodes is subset to only include comparisons where one of the
common barcode must be found in the pair (n = 56, 913).

(S1 Table). Two of the barcodes seen in Fig 2B represented with pink and mint are more similar to
the null distribution and found in a broader geographic in Chad.

The variation in geographical ranges is not driven by a geographical isolation of cases sharing
barcodes. For most worms, we observe a steep increase in unique barcodes up to 200 kilometers
(Fig 3). Worms with a slow increase in the unique barcodes after 200 kilometers correspond to the
human cases observed furthest east in Fig 1A. These index worms follow a similar steep increase
once the radius includes samples along the Chari River. The plateau of diversity observed in most
worms around 18-20 unique barcodes is an artifact of opportunistic sampling proximity (S7 Fig).
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Rarefaction analysis is consistent with geospatial modeling 
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Figure 3: Opportunistic sampling does not drive spatial connectedness of samples. Rarefaction
of index worm cases on geographical proximity of barcode diversity shows a consistent addition
of diversity in quantitatively identified transmission ranges of barcodes sets (<50 kilometers).
The left figure shows all rarefaction analyses for each worm case, and the right figure is separated
by the barcode set number (1-10 for common barcodes, other for barcodes found in less than 10
samples). The numbers in the lower right corner are the number of worms in each barcode set.

1.10 Expanding genetic markers can improve sensitivity for comparing worm popu-
lations.

Including mitochondrial variants outside of CO3, cytB, and ND3-5 loci increased the discrimi-
nation between worm pairs in an independent population (Fig 4A). Variants were called across
the mitochondrial genome from publicly available data for 19 worms from Chad [18]. Forty-four
variants were found within the loci sampled in this study, and 132 variants outside of the sam-
ples loci range. A shift in the genetic similarity distribution in any direction suggests the new loci
can alter the genetic relatedness of a sampled population. We observed a shift in the probability
function mass from 0.55 similarity for within loci variants to a second mass at 0.80 for outside loci
variants. The distribution of genetic similarity between worms using the 44 loci variants is sta-
tistically different than the distribution of genetic similarity using the 132 non-loci variants (Kol-
mogorov–Smirnov test, p < 0.001). The broader pairwise similarity distribution of outside loci is
robust to the number of variants in the pairwise calculation (Fig 4B). Distributions of randomly
subsampling 44 non-loci variants compared to the distribution of 44 loci variants showed that in
some instances the population was less genetically identical with peaks shifted to the left, and
maintaining a higher density of similarity in the 0.75-0.85 range. However, because of the small
sample size without accompanying GPS coordinates of this independent population, we cannot
extrapolate the effect of barcode sets on the spatial links between identical and non-identical pairs.

Excluding variants found in only one worm, we drop from 176 variants to 134 variants for
comparison across the mitochondrial genome. The distribution of outside loci genetic similar-
ity is still broadened in relation to within loci, but the effect is less pronounced (S8 Fig, Kol-
mogorov–Smirnov test p = 0.001). Distributions of randomly subsampled 34 non-loci variants
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Figure 4: Distribution of all-by-all pairwise genetic similarity of variants within or outside
of currently sampled loci. Within loci variants were determined with CO3, cytB, and ND3-5
genomic ranges provided by PlasmoDB. Smoothed density kernel distributions are overlayed on
pairwise genetic similairty distribution histograms for the different genomic regions.

compared to the distribution of 34 loci variants had a less pronounced decrease in sequence sim-
ilarity compared to the inclusion of singletons, but confirmed a higher density of similarity in
the 0.75-0.85 range. Variants were called with an orthogonal method to circumvent any issues
with genotype calling on a small sample size in GATK. More variants across the mitochondrial
genome are identified calling with bcftools than GATK (185 versus 176 variants). Variants calls
with bcftools replicated different distributions for variants within loci and outside loci with a sec-
ondary peak around 0.75 (Kolmogorov–Smirnov test, p = 0.001, S9 Fig).

Discussion

To our knowledge, this is the largest retrospective study linking surveillance and genetic data to
understand Guinea worm transmission in Chad to date, encompassing samples from 2012-2018,
excluding 2014. Knowing the range of transmission for genetically linked samples has the po-
tential to be an important monitoring and evaluation tool for the campaign. We identified 41
unique molecular barcodes from the 459 Chadian worm sequences. Among the 459 samples,
426 samples had associated GPS data. The analyses in this study provide quantitative bounds
on the geographic range of most transmission within a median 18.6 kilometer radius, and often
within an approximately 50 kilometer radius. These results suggest the most effective interven-
tions should consider case sweeps, water monitoring, and abatement approximately 20 kilometers
around a reported case to reduce the spread of genetically related parasites. The population dis-
tribution falling under 50 kilometers implies that extending these efforts from 20-50 kilometers
would largely dampen the dispersion of genetically related worms, with diminishing returns for
efforts greater than 50 kilometers from a reported case. However, worms linked by barcode iden-
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tity are not geographically isolated populations. Each sample is approximately surrounded by
worms representing five to ten different barcodes within a 50 kilometer radius (Fig 3), and indi-
vidual barcodes can vary in their transmission range from three to 150 kilometers. It is important
to consider the genetic diversity of worms in an area when guiding geographically imposed inter-
ventions from these results.

The modeling results presented in this article are consistent with previous analyses, but also
expand the scope of geographic and genetic relatedness. The phylogenetic analysis of barcodes
created from all 459 samples in this work supports the earlier conclusion by Thiele et al. [47] that
humans and dogs share a similar Guinea worm population in their analysis of 75 samples (S1
Fig). There is not a clear temporal trend between host species and suggests fluid transmission
of D. medinensis between humans and dogs. Previous genetic analyses using spatial principal
components analysis had identified a geographic trend of genetic relatedness down the Chari
River in Chad [47, 20, 25]. The research in this article has expanded the scope of that analysis by
revealing that genetically identical and near-identical samples cluster geographically for multiple
areas across Chad. (Fig 1C).

The findings of this work are also aligned with the known epidemiology of the disease and
biology of the parasite. Recent surveillance efforts involving the collaring and GPS tracking of
dogs in Chad show dogs visit water sources within a 10 kilometers range, with variation across
study sites [36]. In our study, the substantial mass of the genetic similarity distributions around
18.6 kilometers usually within 50 kilometers are broadly in agreement with the dog roaming range
including the observed variation by geography; see Fig 2B for reference. Both of these research ef-
forts support the current epidemiological intuition and hypotheses about geographic connectivity
of infections and the role of dogs as a reservoir [21, 47, 36]. These analyses provide quantitative
bounds on the geographic range of local transmission.

Identifying numerous sets of identical or nearly identical genetic sequences among the 459
samples is also expected due to the parasite biology. Direct maternal mitochondrial inheritance
ensures genetic markers on this region are informative of lineage, especially considering the small
estimated spontaneous mutation rate or chance of a sequencing error (§1.7). While identifying
identical or nearly identical molecular barcodes does not allow us to directly infer transmission
events or ancestry, the persistence of barcodes across available years, coupled with the parasite
biology, suggests a sustained population of worms related through transmission. Even though
the probability of having observed a direct transmission event in the available genetic samples is
quite low (given the total number of reported cases), the molecular barcodes demonstrate distinct
value even though the transmission network is only partially observed. Taken together, these
findings strongly suggest an epidemiological connection identified using the genetic data and can
help inform the local epidemiology of Guinea worm in Chad.

There are several limitations to the analysis and modeling in this article. The samples that
were sequenced and included in this analysis, specifically for worms collected from dog hosts,
were retrospectively selected in order to span the geography of Chad and not through a system-
atic sampling frame. As mentioned, this lead to an absence of 2014 samples in this study. We
have mitigated the challenges posed by constraints on the data and methodologies by evaluat-
ing the robustness of each conclusion through a series of sensitivity analyses (Fig 1 and 2). We
demonstrated the geographic clustering results are not sensitive to the fact that many of the hosts
were multiply infected with Guinea worm which could have artificially inflated the geographic
proximity between sample pairs (S5 Fig).

In addition, the characteristics of the Dracunculus medinensis genome is not as well-understood
as other viruses, bacteria, or parasites. There does not exist a set of tailored phylogenetic or phylo-
dynamic methodologies for Guinea worm parasites [47, 13]. With either a comprehensive baseline
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genetic diversity from Chad, a known mutation rate for Guinea worm, or both, we could more ac-
curately assess the genetic similarity threshold to cluster worms based on the mutation biology of
the parasite. Despite these constraints, we showed that allowing a single base pair difference be-
tween worm pair barcodes maintained spatial clustering of identical and nearly identical barcodes
relative to unrelated barcodes that have two or more mutations between pairs in the population
(S2 Fig). However, a more resolved characterization between pairs of samples or barcodes is po-
tentially limited by the use of three mitochondrial loci coupled with the small sample size relative
to the number of observed and unobserved total cases from 2015-2017. To test this hypothesis, we
investigated an independent population of genetic samples that had more complete coverage of
the mitochondrial genome (§1.10). We were able to identify that more variants are observed in
other regions of the mitochondrial genome (§1.10), which was confirmed with a combination of
bootstrapping and variant callers. Due to small sample sizes of available whole mtDNA, we were
unable to conclude whether the extra variants improve the genetic differentiation within barcode
sets and refine the geographic clustering. The substantial number of additional variants in the mi-
tochondrial genome strongly suggests that access to more of the genome will allow better between
resolution of genetic similarity for Chadian Guinea worm.

Despite these limitations, the modeling and analyses in this article have important implica-
tions for policy makers and elimination programs. From 2010-2019, there has been a concurrent
increase in both reported cases and surveillance efforts; a complete characterization of the genetic
diversity could help distinguish whether Guinea worm prevalence is actually increasing or is a
consequence of improved surveillance. Although there is uncertainty of how genomic signatures
are impacted by interventions and the potential temporal lags caused by the year-long life cycle,
the continued appearance of genetically identical worms across years suggests genomic data is in-
formative for understanding transmission, surveillance, and even interventions. Monitoring the
genetic landscape could provide programmatic evidence for the effectiveness of geographically
localized interventions by observing the elimination of barcode lineages. Sustained barcodes are
particularly useful in instances where case reports may be disrupted due to insecurity or inacces-
sibility.

A comprehensive bank of all genomic samples paired with geographic data would allow a
broader set of analyses to help the elimination program for outbreak analysis, importation ver-
sus local circulation characterization, and potentially reveal unknown animal reservoirs. With the
available genetic data, we cannot provide programmatic guidance on a specific number of sam-
ples that should be collected and sequenced to capture the genetic diversity in Chad due to the
high diversity of the currently sampled population (S1 Appendix). Sequencing more historical
samples could either decrease genetic diversity and orphaned pairs or support the high diversity
of the population. The former would suggest a subset of samples could be sequenced to char-
acterize Guinea worm diversity, while the latter would require sequencing a majority or all of
the identified worms. Given current surveillance protocols, samples of the parasite are already
collected in addition to a standardized survey for all cases. Thus, sequencing a subset or all of
the available retrospective and prospective Guinea worm samples is feasible with respect to the
availability of genetic material, an established sequencing protocol, and access to efficient high-
throughput sequencing technologies. The confirmed improvement in genetic resolution across the
whole mitochondrial genome suggests switching sequencing technologies for the proposed scale
up of genetic sequencing of worms is an important future research direction. More broadly, cou-
pling these findings with innovations on constructing phylogenies from whole genome sequenc-
ing of the Guinea worm larvae [13] and microsatellites of the worm nuclear genome [47], a holistic
program of sequencing technologies and analytic methodologies will help translate research in-
sights into programmatic input for the elimination of Guinea worm in Chad. Furthermore, addi-
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tional analyses of the full range of epidemiological data collected by the CGWEP alongside linked
genomic data are warranted, and may further elucidate transmission dynamics in Chad. The
parasite genome has the potential to be an integral tool for the end-game strategy in Chad and
beyond.
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Barcode Dog.GPS Human.GPS Dog.all Human.all
1 107 0 114 0
2 52 3 56 4
3 52 1 54 2
4 42 0 43 1
5 33 0 33 1
6 27 2 28 3
7 14 1 15 1
8 13 1 15 2
9 10 0 10 0

10 8 2 8 2
11 9 0 9 0
12 6 0 6 0
13 5 0 5 1
14 3 1 3 1
15 3 0 4 0
16 0 3 0 3
17 3 0 3 0
18 0 2 0 2
19 2 0 2 0
20 2 0 2 0
21 2 0 2 2
22 1 0 1 0
23 1 0 1 0
24 1 0 1 0
25 1 0 1 0
26 1 0 1 0
27 1 0 1 0
28 1 0 1 0
29 1 0 1 0
30 1 0 1 0
31 1 0 1 0
32 1 0 1 0
33 1 0 1 0
34 1 0 1 0
35 1 0 1 0
36 0 1 1 2
37 1 0 1 0
38 1 0 1 0
39 0 0 0 1
40 0 0 0 1
41 0 0 0 1

S1 Table: Barcode counts for sequenced samples. GPS columns indicates the number of samples
for each barcode used in geospatial analyses by species. All worms indicates the number of worms
assigned to each barcode, including samples that were not linked to GPS data for each species.
Phylogenetic relationships for barcodes (see S1 Fig) are plotted once per species, but have different
numbers of samples represented in each branch.
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S1 Fig: Phylogenetic comparison of worm barcodes identified per species. This graph demon-
strates that barcodes were shared among humans and dogs alike, and were often present over the
course of multiple years. Tree tip labels represent a single barcode per species. Refer to S1 Table
for sample counts of each barcode by species. Barcode identifying numbers are represented more
than once if observed in both species. A blue filled cell next to each barcode is indicative that
barcode was represented at least once in the respective year.
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S2 Fig: Spatiotemporal modeling of barcode relatedness collapsed by a single base pair differ-
ence. Number of pairwise comparisons for identical barcodes = 13, 967, for non-identical barcodes
= 76, 558.

S3 Fig: Permutation of distance between cases on barcode relatedness densities. The x-axis is
the permuted distance between worm pairs and the y-axis represents the density for population
genetic similarity scores for all worms (n=426). Each line represents worm pair distance permuta-
tion (n=100) for the population. The lines for identical and non-identical barcodes are consistent
between permutations and overlap.
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S4 Fig: Barcode identity within hosts and genetic similarity distribution by shared location.
A. Each host with the number of worms pertaining to each barcode set. ”Not common” refers to
barcodes found in less than 10 samples in the population for visual clarity.
B. Distributions of genetic similarity between worms with the same reported GPS coordinates,
colored by whether the pair is obtained from the same or different hosts.

21

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.20207324doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.05.20207324
http://creativecommons.org/licenses/by/4.0/


S5 Fig: Host subsampling on barcode relatedness densities. The x-axis is the distance between
worm pairs and the y-axis represents the density for population genetic similarity scores with one
worm per host (n = 282). Each line represents a bootstrap (n=100) of a single worm per host.
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S6 Fig: Location of common barcodes in Southern Chad. Samples are colored by their barcode
identifier, and shapes represent the host species. Barcodes 3,4, and 10 appear have similiar spatial
distributions. Barcodes 2 and 5 have similar spatial distributions and are highly focal. some
barcodes span a very large geographic area, which could suggest they are ancestral sequences
that have diffused over time or are transmitting due to human behaviors.
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S7 Fig: Geographic distance between cases for each worm. The geographic distance between
worms relative to a single worm were organized in ascending order. The x axis is the worm index
by distance and the y axis is the cumulative distance from each index worm. Spans of a flattened
curve are indicative of geographic stretches that do not contain any samples and support the lack
of barcode diversity observed in cerain geographic distances in Fig 3.
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S8 Fig: Distribution of pairwise similarity using GATK variants found in greater than one
worm. The x-axis is the measured genetic similarity for variants within current loci (n=34) and ex-
tending to the rest of the mitochondria (n=101), and y-axis is the number of pairwise comparisons
(19*19 = 361). Filled regions show the smoothed density estimates for histograms.
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S9 Fig: Orthogonal validation of population pairwise similarity using variants identified by
bcftools mpileup. The x-axis is the measured genetic similarity for variants within current loci
(n=44) and extending to the rest of the mitochondria (n=141), and y-axis is the number of pairwise
comparisons (19*19 = 361). Filled regions show the smoothed density estimates for histograms.
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