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Diversity and dissemination of viruses in
pathogenic protozoa

Senne Heeren 1,2,3, Ilse Maes1, Mandy Sanders4, Lon-Fye Lye5,
Vanessa Adaui 6, Jorge Arevalo7, Alejandro Llanos-Cuentas7, Lineth Garcia8,
Philippe Lemey2, Stephen M. Beverley 5, James A. Cotton 4,9,
Jean-Claude Dujardin 1,3 & Frederik Van den Broeck 1,2

Viruses are the most abundant biological entities on Earth and play a sig-
nificant role in the evolution of many organisms and ecosystems. In patho-
genic protozoa, the presence of viruses has been linked to an increased risk of
treatment failure and severe clinical outcome. Here, we studied the molecular
epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and
Bolivia through a joint evolutionary analysis of Leishmania braziliensis and
their dsRNA Leishmania virus 1. We show that parasite populations circulate in
tropical rainforests and are associated with single viral lineages that appear in
low prevalence. In contrast, groups of hybrid parasites are geographically and
ecologically more dispersed and associated with an increased prevalence,
diversity and spread of viruses. Our results suggest that parasite gene flow and
hybridization increased the frequency of parasite-virus symbioses, a process
that may change the epidemiology of leishmaniasis in the region.

Viruses have the ability to infect any cellular life form on Earth. Parti-
cularly fascinating are RNA viruses that infect unicellular eukaryotes1–3.
Some of these viruses have important biological roles, such as limiting
fungal pathogenicity4,5 or increasing protist fecundity6. The double-
stranded RNA (dsRNA) viruses of the family Totiviridae have evolved
extensive diversity and are present in phyla separated by a billion years
of evolution, with closely related viruses identified in various genera of
fungi and protozoa7. Totiviruses have no lytic infectious phase and
thus adopted a lifestyle of coexistence favoring long-termpersistence,
passing from cell to cell mainly through mating and cell division8.
Because of this intimate association, it has been postulated that these
viruses have a mutualistic co-evolutionary history with their hosts9.

Totiviruses encompass most viruses identified in pathogenic
protozoa causing widespread severe illnesses such as trichomoniasis,
giardiasis and leishmaniasis7. An iconic group of human pathogenic

parasites is the genus Leishmania (family Trypanosomatidae), causing
the vector-borne disease leishmaniasis in about 98 countries10, mainly
in the tropics and subtropics11. Members of the Leishmania genus are
associated with the Leishmania RNA virus (LRV) (family Totiviridae).
Despite reports of horizontal transmission12–16, vertical transmission is
thought to be the predominantmode of viral transmission resulting in
general co-evolution of Leishmania and LRV9,17,18. Different types of
LRV are carried by members of the Leishmania subgenera Viannia
(LRV1), Leishmania (LRV2) and Sauroleishmania (LRV2)16,19. It was
shown that the dsRNA of LRV1 is recognized by Toll-like receptor 3
(TLR3), whichdirectly activates a hyperinflammatory response causing
increased disease pathology, parasite numbers and immune response
in murine models20. In human infections, the presence of LRV1 has
been associated with an increased risk of drug-treatment failures and
acute pathology21–23. The virus thus confers enhanced virulence and
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survival advantage to Leishmania in rodent models24–26 andmay play a
key role in the severity of human leishmaniasis.

Given the epidemiological and biomedical relevance of the
Leishmania-LRV1 symbiosis27, there is a clear need to understand the
diversity and disseminationof the virus in parasite populations. To this
end, we jointly investigated the evolutionary history of L. braziliensis
and LRV1 fromPeru and Bolivia, usingwhole genome sequencing data.
Leishmania braziliensis is a zoonotic pathogen circulating mainly in
rodents and other wild mammals (e.g., marsupials) in Neotropical
rainforests28. The parasite is the most prominent cause of cutaneous
leishmaniasis in Central and South America and occasionally develops
into the disfiguring mucocutaneous disease due to its spread to
mucosal tissue. Our previous work in Peru has shown that LRV1 was
present in >25% of the sampled parasites, and that the virus was sig-
nificantly associated with an increased risk of treatment failure22.

Results
Population genomics of L. braziliensis from Peru and Bolivia
We sequenced the genomes of 79 L. braziliensis isolates with known
LRV1 infection status22, which hadbeen sampledduring various studies
on the genetics and epidemiology of leishmaniasis in Peru and
Bolivia29–33 (Supplementary Data 1, Supplementary Fig. 1). The read
coverage ranged from 35x to 121x (median = 58x). Three isolates

(CUM68, LC2318, PER231) were removed because of aberrant alternate
allele read depth frequencies (Supplementary Results). The resulting
dataset (N = 76) comprised a total of 407,070 SNPs and 69,604 bi-
allelic INDELs. The SNP allele frequency spectrum was dominated by
low-frequency variants, with over 66% of SNPs being at <= 1% minor
allele frequency. Chromosome and gene copy numbers were investi-
gated using normalized median read depths. This revealed that the
majority of chromosomes were disomic (Supplementary Fig. 2). When
investigating variation in copy numbers for 8573 coding DNA
sequences, we found 201–286 amplifications and 13–33 deletions per
isolate (Supplementary Data 2). This is in line with what is known for
the genomes of Leishmania spp34.

A phylogenetic network based on genome-wide SNPs revealed a
star-like topology whereby the majority of isolates were separated by
long branches (Fig. 1a), a pattern symptomatic of recombination.
Indeed, levels of linkage-disequilibrium (LD) were relatively low (r2

decayed to <0.1 within <20bp after correcting for sample size) (Sup-
plementary Fig. 3a, b) and distributions of per-site inbreeding coeffi-
cients per population were unimodal and centered around zero
(Supplementary Fig. 4a–d, Supplementary Data 3), after correcting for
population structure and spatio-temporal Wahlund effects. Our
genome-scale data thus indicate that the distinct populations in Peru
and Bolivia are approximately in Hardy-Weinberg and linkage
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Fig. 1 | Populationgenomic structure and admixture in L. braziliensis fromPeru
and Bolivia. a Phylogenetic network as inferred with SPLITSTREE based on
uncorrected p-distances between 76 L. braziliensis genomes (excluding isolates
CUM68, LC2318 and PER231) typed at 407,070bi-allelic SNPs. Branches are colored
according to groupsof parasites as inferredwithADMIXTURE,fineSTRUCTUREand
PCAdmix (Fig. 2a). Box indicates the position of the Bolivian genomes; all other
genomes were sampled in Peru. Circles at the tips of seven branches point to
groups of near-identical genomes and show the number of isolates. The terminal
branches are colored according to the parasite groups as shown in (b, c), while the
colors of the internal branches were left black.b ADMIXTURE barplot summarizing
the ancestry components assuming K = 2 or K = 3 populations in 65 genomes (i.e.,
excluding near-identical genomes). The phylogenetic tree summarizes the

fineSTRUCTURE clustering results based on the haplotype co-ancestry matrix
(Supplementary Fig. 5). Numbers indicate the MCMC posterior probability of a
given clade. Braces indicate the three ancestral populations (INP, HUP, PAU)
and two groups of admixed parasites (ADM, STC); the remainder of the parasites
were of uncertain ancestry (UNC). c Geographic map of Peru and Bolivia showing
the origin of the 76 genomes. Dots are colored according to parasite groups as
inferred with ADMIXTURE, fineSTRUCTURE and PCAdmix (Fig. 2a). Gray -scale
represents altitude in kilometers, indicating the position of the Andes along the
Peruvian and Bolivian Coast. Names are given for those Peruvian and Bolivian
departments where a parasite was isolated. Country-level data for Peru and
Bolivia, including administrative boundaries and altitude, were available from:
http://www.diva-gis.org/Data. Source data are provided as a Source Data file.
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equilibrium, suggesting that recombination may be a prevalent and
universal process in this species.

While the majority of L. braziliensis genomes differed at an aver-
age9866fixedSNPdifferences (median9494),we also identified seven
small groups of isolates with near-identical genomes that clustered
terminally in the phylogenetic network (Fig. 1a, circles with numbers).
Isolates within each of these groups displayed no or few fixed SNP
differences and a relatively small amount of heterozygous SNP dif-
ferences (Supplementary Data 4), and are thus likely the result of
clonal propagation in the wild. Most of these clonal lineages were
geographically confined (Fig. 1a, Supplementary Data 1) and one of
them was sampled over a period of 12 years, suggesting that the
observed clonal population structure is temporally stable (Supple-
mentary Data 4).

We included one isolate from each clonal lineage and removed
SNPs showing strong LD, leaving a total of 176,143 SNPs for investi-
gating parasite population structure. Based on ADMIXTURE and
fineSTRUCTURE analyses, we identified three distinct ancestry com-
ponents (PAU, HUP, INP) (hereafter referred to as ancestral popula-
tions) corresponding to parasite groups with geographically restricted
distributions (Fig. 1b, c, Supplementary Fig. 5). These three groups
showed signatures of spatial and temporal genetic structure: PAU
(N = 19)was sampled between 1991 and 1994 in Paucartambo (Southern
Peru), INP (N = 21) was sampled between 1994 and 2002 in the Isiboro
National Park (Central Bolivia) and HUP (N = 10) was sampled between
1990 and 2003 in Huanuco, Ucayali and Pasco (Central Peru) (Fig. 1b, c,
Supplementary Fig. 5). Assuming K = 2 ancestry components, the two
Peruvian groups PAU and HUP were clustered as one (Fig. 1b).

While our results indicate that L. braziliensis may be genetically
clusteredat sampling sites,we also identified three groups (ADM,UNC,
STC) with mixed ancestries, hereafter referred to as hybrid groups to
contrast with the identified ancestral populations (Fig. 1b): one large
group of 20 isolates (ADM) sampled between 1991 and 2003 mainly
from Southern Peru (Junin, Cusco and Madre de Dios), four isolates
(UNC) sampled between 2001 and 2003 from Central/Northern Peru
(Junin, Ucayali and Loreto) and one group of two isolates (STC) sam-
pled in 1984/1985 from the Santa Cruz Department in Central Bolivia
(Fig. 1c). The genetic diversity of the largest group of hybrid parasites
(ADM) was much larger compared to the three ancestral populations:

the number ofmitochondrial haplotypes and nuclear segregating sites
was higher in the ADM group (309,543 SNPs; 5 haplotypes) compared
to that of the PAU (189,748 SNPs; 4 haplotypes), INP (185,927 SNPs; 4
haplotypes) and HUP (215,741 SNPs; 2 haplotypes) populations. The
observation of a large number of nuclear SNPs and mitochondrial
haplotypes in the ADM group suggests that these parasites are des-
cendants from multiple independent hybridization events (Supple-
mentary Fig. 6).

We used PCAdmix to infer the genome-wide ancestry of the
admixed isolates and three control isolates from each source popula-
tion (Fig. 2a, b). Ancestry was assigned to phased haplotype blocks of
30 SNPs by comparing them to the reference panels of PAU, INP and
HUP. While the control samples were assigned to their respective
populations (92.9–99.4% of these haplotype blocks), the admixed
individuals showed mixed ancestries between PAU (21.1–73.1%), INP
(14.3–36.7%) and HUP (0.1–54.4%). Plots of local ancestry revealed a
complex and heterogeneous pattern of mosaic ancestry between the
three sources (Fig. 2b, Supplementary Fig. 7), suggesting that the
hybrid parasites experienced many cycles of recombination following
the initial hybridization event(s).

We next used the three-population statistic f3 to formally test the
potential sourcepopulations for introgressedalleles in theADMandSTC
groups. When testing (test; A,B), a negative result indicates that the test
group is an admixed population from A and B. We found a significantly
negative f3 statistic when ADM was the test group with PAU/HUP
(f3 =−0.0013, Z-score =−18.2) andPAU/INP (f3 = −0.0002,Z-score =−2.8)
as sources, but not with INP/HUP (f3 = 0.0013, SD= , Z-score = 14.8) as
sources. All estimated f3 statistics were positive when STC was used as
the test group. Hence, the ancestry of STC remains largely unresolved,
but may involve admixture with divergent L. braziliensis lineages not
captured in this study, as indicated by their distant position in a haplo-
type network of mitochondrial maxicircle SNPs (Supplementary Fig. 6)
and by the comparatively large number of fixed SNP differences
between STC and other parasite groups (Supplementary Fig. 8).

Ancestral parasite populations are isolated in pockets of
suitable habitat
The strong signatures of geographical isolation of the three inferred
ancestral populations (PAU, INP and HUP) prompted us to elucidate
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the role of geography and the abiotic environment on the population
genomic structure of L. braziliensis in the region. This was done
through redundancy analysis (RDA) and generalized dissimilarity
modeling (GDM), including geographic distance and 19 bioclimatic
variables (Supplementary Data 5). Variable selection using two
approaches consistently pinpointed differences in isothermality
(bio3) and precipitation of driest month (bio14) between sampling
locations as themain environmental contributors to parasite genetic
distance. One of the two approaches also selected annual mean
diurnal range (bio2), precipitation seasonality (bio15) and precipita-
tion of the warmest quarter (bio18) (Supplementary Data 6; Supple-
mentary Results). The RDA model including only bio3 and bio14
revealed that the environment and geography combined explained
one-third (27.3%) of the genomic variability, of which 10.2% was
contributed by environmental differences and 7.5% by geographic
distance (Fig. 3a, Supplementary Data 7). The alternative RDAmodel,
including bio3, bio14, bio2, bio15 and bio18, revealed a stronger
environmental contribution in explaining the genomic variation.
Here, the model could explain 34.9% of the total genomic variation
where 17.8% was explained by the environmental component and
5.4% by geography (Fig. 3b Supplementary Data 7). It is notable that
the partitioned contributions are not additive, indicating that there is
a strong confounding effect among the environmental and geo-
graphic components in both models. This means that about one-
third of the explainable genomic variation cannot be attributed to
the individual components. Similar results were obtained with the
GDM models (Supplementary Results).

In accordance with the RDA and GDM analyses, we generated
environmental niche models (ENMs) using present and past biocli-
matic variables to predict and spatially project the putative suitable
habitat distribution of the ancestral populations at present and during
the Last Glacial Maximum (LGM; 21 kya) and the Last Interglacial per-
iod (LIG; 130 kya) (Suppl Results). Thepresent-day predicted suitability
regions (Fig. 4a) coincided with tropical rainforests (Af), as predicted
by the Köppen-Geiger (KG) climate classification (Fig. 4b), and shows
that PAU, INP and HUP are surrounded by the less suitable tropical
monsoon (Am) and savannah (Aw) forests and the non-suitable
Andean ecoregions. Compared to the present, suitability predictions
revealed a more widely distributed habitat for the LIG period and
extreme retraction of habitat suitability during the LGM period

(Supplementary Fig. 9). This alternation of a widespreadoccurrence of
suitable habitat during warmer climatic periods and a strong frag-
mentation in colder periods could have played a role in the divergence
of L. braziliensis in the region.

We found that the three hybrid groups were ecologically and
geographically more widespread compared to the ancestral parasite
populations that were largely associated with tropical rainforests. The
ADM group was mainly found within tropical rainforests (Af), tropical
monsoon forests (Am), tropical savannah (Aw) and temperate (dry
winter and warm summer) (Cwb) regions surrounding the location of
the PAU population (Southern Peru). The UNC group is found within
tropical rainforests (Af) and tropical monsoon forests (Am) sur-
rounding the location of the HUP population (Central/Northern Peru).
The STC group is found in tropical monsoon forests (Am) near the INP
population (Central Bolivia). The geographic distances among sam-
pled hybrids from the ADM (0–598 km) and UNC (0–694.1 km) groups
were significantly larger compared to the distances among isolates
from the PAU (0 km) and INP (0–66.4 km) groups, though not the HUP
group (0–358.2 km) (Supplementary Data 8).

LRV1 consists of divergent viral lineages that co-diverged with
Leishmania host species
A total of 31 out of 79 analyzed L. braziliensis isolates (39%) were
LRV1 + , as revealed in previous work22. While these originated mainly
from Peru (N = 27), the geographic distribution of LRV1+ and LRV1-
isolates overlapped in most localities (Supplementary Fig. 1). Here, we
recovered LRV1 genomes for 29/31 LRV1+ isolates from Peru and
Bolivia following a de novo assembly of dsRNA sequencing reads
(Supplementary Data 9; Supplementary Results). The procedure failed
for two isolates, either because of difficulties in growing cultures
(PER096) or because the assembly yielded a partial LRV1 genome
(PER231). Two different isolates (CUM65 and LC2321) each harbored
two LRV1 genomes (Supplementary Results), differing at 999 (for
CUM65) and 60 (for LC2321) nucleotides, bringing the total to 31 viral
genomes.While only 0.004–0.1% of the RNA sequencing reads aligned
against the LRV1 assemblies, median coverages were relatively high,
ranging between 31X and 868X (median = 372X) (Supplementary
Data 9). Sequences assembled from the RNA sequencing data were
identical to ~1 kb sequences obtained with Sanger sequencing, con-
firming the high quality of our assemblies (Supplementary Results).
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The assembled LRV1 sequenceswere 4738–5285 bp long, covering
the near-full-length coding sequence of the virus, and showing an
average GC content of 46% (45.4%–46.8%) (Supplementary Data 9). All
but two genomes showed a typical totivirus organization, with two
overlapping open reading frames encoding the Capsid Protein (CP;
2229 bp) and the RNA-dependent RNA Polymerase (RDRP; 2637 bp).
Two isolates (PER014 and PER201) each contained 1 internal stop
codon at amino acid positions 882 (TAG) and 875 (TAA), respectively.
Both are located in the overlapping region of CP and RDRP within
ORF3 (i.e., coding for RDRP). Sequence identities between these novel
LRV1 genomes from Peru and Bolivia, and a previously published LRV1
genome from French Guiana (YA70; KY750610) ranged between 80%
and 81%. Amino acid identity of both genes against YA70 ranged
between 94% and 96% for CP, and 85%–87% for RDRP (Supplemen-
tary Data 9).

Initial viral evolutionary analyses were done using partial
(N = 70) and full-length genome (N = 57) sequences, including pub-
licly available LRV1 genomes from L. braziliensis, L. guyanensis and L.
shawi from Brazil, French Guiana and Suriname. Despite the allopa-
tric sample, phylogenies based on complete genomes (Fig. 5a) and
partial sequences (Supplementary Fig. 10) revealed that LRV1 con-
sists of divergent lineages that are grouped by Leishmania host
species. In order to investigate whether LRV1 co-diverged with L.
braziliensis and L. guyanensis, we reconstructed phylogenies based
on viral genomes and their corresponding host genotypes. Similar to
the results obtained for LRV1 (Fig. 5a), a phylogenetic network
revealed a clear dichotomy between L. braziliensis and L. guyanensis
(Supplementary Fig. 11). Moreover, co-phylogenetic analyses
revealed a split of both viral and parasite genomes at the deepest
phylogenetic node, confirming that LRV1 strains cluster with their
Leishmania host species (Fig. 5b). A subsequent permutation test for
co-speciation confirmed the topological similarity between both
phylogenetic trees (RF = 70, p-value = 0.001). Similarly, we observed
a significant but much weaker co-phylogenetic signal between LRV1
and L. braziliensis (RF = 38, p-value = 0.031). Closer inspection of the
phylogenetic trees shows that the majority of incongruences

between LRV1 and L. braziliensis are linked to the hybrid ADM para-
site group (Supplementary Fig. 12).

Diversity and geographic spread of LRV1 in Peru and Bolivia
Focusing on LRV1 genome diversity from Peru and Bolivia, we defined
a total of nine divergent viral lineages (L1-9), all supported by high
bootstrap values (Fig. 6a) and low pairwise genetic distances (<0.09;
Supplementary Data 10; Supplementary Data 11). No evidence of
recombination was found in our set of LRV1 sequences, following
pairwise homoplasy index (PHI) tests (p =0.99)35. The number of LRV1
lineages per locality was positively correlated with the number of
sampled parasites (Pearson’s r =0.76; t = 5.72; df = 24; p = 6.77e-06)
(Supplementary Fig. 13). For instance, the most densely sampled
location (Paucartambo, Cusco, Peru) in terms of L. braziliensis (N = 25)
also contained the most viral lineages (Supplementary Fig. 13), two of
which (L5 and L9) were only found in this location (Fig. 6b). Other
locations that includemultiple viral lineages are Tambopata (Madrede
Dios, Peru) (L3 and L4) and Moleto (Cochabamba, Bolivia) (L7, L8)
(Fig. 6b; Supplementary Fig. 13). These results show that multiple
divergent viral lineages could co-occur within the same geographic
region, and that amore dense sampling of parasitesmayuncovermore
viral lineages.

Themajority of viral lineages (L2-L6, L8-L9) were found in a single
locality (Fig. 6b), suggesting that the geographic spread of most LRV1
lineages is restricted. Two viral lineages were more widely distributed:
one large group of viral genomes (L1) was found along the Andes from
Northern Peru to Southern Peru, and one group (L7) was found in
Cusco (Peru) and Cochabamba (Bolivia) (Fig. 6b). Three viral genomes
of lineage L7 were virtually identical: viral sequences from the Bolivian
isolates CUM68 and CUM65 were identical, and differed by one
nucleotide from a viral sequence of the Peruvian LC2321 strain. The
distal position of the two Bolivian L7 strains within a larger clade of
Peruvian viral lineages (L3, L4, L5 and L6) suggests that the former was
introduced in Bolivia from Southern Peru (Fig. 6a, b). Finally, nearly all
lineages (L2-L9) were found in the tropical rainforests (Af) of Peru and
Bolivia, except for the widespread lineage L1 that was found in tropical
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rainforests (Af), tropical monsoon (Am), tropical savannah (Aw) and
temperate climate (Cwb) (Fig. 7a). This suggests that LRV1 pre-
dominantly evolved in the lowland tropical rainforests before
spreading to other ecological regions.

We reconstructed the viral dispersal dynamics in continuous
space and estimated the impact of each lineage on the diffusion
coefficient. This revealed that viral lineages L1 and L7 had the strongest
influence on overall LRV1 dispersal in the region, exemplified by a
tremendous drop in the diffusion coefficient when excluding L1 or L7
from the phylogeny (Fig. 7b, c; Supplementary Data 12).

High LRV1 prevalence and lineage diversity within groups of
hybrid parasites
When investigating the distribution of viral lineages across the different
L. braziliensis groups, we found two impactful observations. Firstly, the
LRV1 prevalence significantly differed between the ancestral (PAU,HUP,
INP) and hybrid (ADM, UNC) groups (Chi-squared test: χ2 = 15.76; df = 1;
p = 7.18e-05). Specifically, we observed a significantly lower prevalence
of LRV1 in the ancestral parasite populations PAU (26.3%; 5/19), INP
(14.3%; 3/21) and HUP (20%; 2/10) compared to ADM (80%; 16/20),
though not compared to UNC (50%; 2/4) due to the low sample size

(Fig. 8a; pairwise Fisher’s exact tests; SupplementaryData 13). Secondly,
the three ancestral populations PAU, INP andHUP (comprising a total of
50 isolates) were dominated by a specific viral lineage: the two LRV1+
isolates fromHUP comprised the L1 viral lineage, the five LRV1+ isolates
from PAU comprised the L5 viral lineage and the three LRV1+ isolates
from INP comprised the L8 viral lineage, with the exception of isolate
CUM65 that was coinfected with a viral genome from lineage L7
(Fig. 8a). Contrastingly, the LRV1 +ADM parasites harbored almost all
viral lineages (L1, L3-L9), four of which were found exclusively in the
ADMgroup (Fig. 8a). This is also reflected by a higher Shannondiversity
index for the ADM group compared to the ancestral populations
(Supplementary Data 13).

Finally, we examined the association between LRV1 and treatment
outcome for all patients. A total of 41 isolates (51.8%) were sampled
from patients with known treatment outcomes22 (Supplementary
Data 1). Of these, 23 patients were classified as cured while treatment
failed for 18 patients. Similarly as described before22, the percentage of
treatment failures was lower for LRV1- isolates (37%; 9 failure vs. 15
cured) than for the LRV1+ isolates (53%; 9 failure vs. 8 cured), although
this difference was not significant (exact logistic regression: p =0.36)
due to our lower sample size compared to the study of ref. 22. Here, we
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investigated inmoredetail the distribution of treatment failures across
the different LRV1 lineages and parasite groups. This was only done for
INP (67% with known treatment outcomes), HUP (70%), ADM (70%)
and UNC (100%) for which sufficient data on treatment outcome was
available; PAU and STC were excluded here because treatment out-
come was unknown for all patients. An exact logistic regression ana-
lysis revealed that the difference in the percentage of treatment
failures between parasite groups was marginally significant (p =0.08).
Specifically, we found that the hybrid groups ADM (57.1%: 8 failures vs.
6 cured) and UNC (75.0%: 3 failures vs. 1 cured) were more frequently
associated with treatment failures compared to HUP (28.6%: 2 failures
vs. 5 cured) and INP (35.7%; 5 failures vs. 9 cured). Remarkably, most of
the patients with treatment failures (88%; 7/8 failures) in the ADM
groupwere associatedwith LRV1, inparticular the L1 viral lineage (63%;
5/8), while treatment failure was irrespective of LRV1 presence for the
ancestral populations (Fig. 8b, c). Altogether, our results show that the
hybrid ADM group was frequently associated with treatment failures,
the majority of which occurred in patients infected with LRV1-bearing
Leishmania.

Discussion
Our main goal was to understand the evolution and dissemination of
viruses in an important group of human pathogenic parasites. To this
end, we studied the ancestry of natural L. braziliensis and LRV1 from
Peru and Bolivia based on whole genome sequence analysis.

We firstly investigated the population genomic diversity and
structure of L. braziliensis. Genetic diversity studies have shown that
populations in Peru30,36, Colombia37 and Brazil38,39 are genetically
heterogeneous and structured according to their geographical ori-
gin. In addition, divergent ecotypes were described in Peru32,33 and
Eastern Brazil40, suggesting that the environmentmay play a key role
in the L. braziliensis population structure. In Peru, our previous work
revealed the existence of two Andean and one Amazonian lineage33,
the latter of which was infected with LRV121,22. Here, we show that
Amazonian L. braziliensis is further subdivided into distinct ancestral

populations that are isolated in patches of tropical rainforest, con-
firming that this species primarily evolved within the Amazonian
rainforest. Each parasite population contained about half the total
number of SNPs identified in our panel, indicating that we only
captured a part of its genomic diversity in the region, and suggesting
that L. braziliensis is genetically heterogeneous. Models of landscape
genomics show that geographic distance and in particular environ-
mental differences between sampling locations contributed to par-
titioning parasite diversity. In addition, ecological niche models
revealed that the suitable habitat of L. braziliensis has changed over
the past 150,000 y, including major contractions during LGM
that may have promoted the diversification of this parasite in the
region. Our observations indicate that the extremely diversified
ecosystem of the Amazonian forest, including various host–vector
communities41, together with forestation changes over the past
150,000 years may have driven the large diversity and population
substructure of L. braziliensis.

It has been postulated that protozoan parasites may have a pre-
dominantly clonal mode of reproduction in natural populations and
that sexual recombination events are rare42, although this theory has
been the subject of intense debate for more than 30 years42–44. For L.
braziliensis, studies using multilocus microsatellite profiles revealed
contradictory results, including moderate degrees of inbreeding in
natural populations from Peru and Bolivia30,36 and significant levels of
recombination in populations from the Brazilian Atlantic Coast39. Our
genome-scale data indicate that the ancestral populations in Peru and
Bolivia are approximately in Hardy-Weinberg and linkage equilibrium,
suggesting that recombination may be a prevalent process in this
species. In addition, we identified 25 isolates (32% of our panel) with
signatures of mixed ancestry, and demonstrated that these are the
result from multiple independent hybridization events. Against this
background of recombination, we found six groups with two and one
group with seven near-identical genomes that are the result of clonal
propagation. These observations suggest that Amazonian L. brazi-
liensis follows an epidemic/semi-clonal model of evolution45,46, as
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proposed for other protozoan parasites44. This model assumes
frequent recombination within all members of a given population,
where occasionally a successful individual increases in frequency to
produce an epidemic clone.

We next investigated the diversity and evolution of LRV1. The
presence of LRV1 has been demonstrated for several L. Viannia spp.
such as L. braziliensis and L. guyanensis21,22,47–51, as well as L.
panamensis52,53, L. shawi51, L. naiffi54 and L. lainsoni51. Phylogenetic
analyses based on partial sequences from Brazil and French Guyana
revealed that LRV1 mainly clustered according to their respective L.
(Viannia) host species55–57. Here, we added sequence data from Peru
and Bolivia and confirmed that LRV1 lineages cluster according to the
different L. (Viannia) species, indicating that horizontal transfer of
LRV1 betweenparasite species is rare55,56. The agreement between LRV1
and Leishmania phylogenies corroborates the general hypothesis that
LRV1 may have co-evolved with L. Viannia spp9,19,58. While we observed
a clear pattern of co-divergence at the parasite species level, we
detected a much weaker intraspecific co-phylogenetic signal between
LRV1 and L. braziliensis. Our data shows that themajority of sequenced
LRV1 genomes and lineages were sampled from hybrid parasites, and
that co-phylogenetic incongruences are mainly caused by prevalent
horizontal transmission of LRV1 due to parasite gene flow and hybri-
dization. Such intraspecific phylogenetic incongruences have also
been observed for LRV2 in L. major from Uzbekistan59 and other
endosymbionts, such as Wolbachia60.

Probably themost remarkable outcomeof our study is that hybrid
parasites were geographically and ecologically widely distributed and
commonly infected with strains from a pool of genetically diverse
LRV1, while ancestral populations were confined to the tropical rain-
forests and infrequently associated with a single LRV1 lineage. This
suggests that (i) reproductively isolated parasite populations may lose
viral diversity throughgeneticdrift61,62, a process that could explain the
absence of LRV1 in Leishmania species that experienced population
bottlenecks and reproduce mostly clonally, such as L. peruviana33 and
(ii) parasite geneflowandhybridizationmaymaintain and/or replenish
LRV1 diversity in the region. The latter is best exemplified by the most
prevalent viral lineage L1 that is the only viral lineage found in ecolo-
gical regions other than the tropical rainforests, and the L7 viral lineage
that was introduced in Bolivia from Southern Peru. These two viral
lineages also showed much higher dispersal rates compared to the
others and are frequently associated with hybrid parasites. These
results suggest that parasite gene flow and hybridization might have
mediated the spread of the two viral lineages in new foci. One obser-
vation of potential concern is that 61% (11 of 18) of the patients
experiencing treatment failure were infected with hybrid parasites,
half of which (5 of 11) infectedwith thewidespread L1 viral lineage. This
indicates that patients may be more at risk of treatment failure when
infected with hybrid Leishmania parasites that carry the L1 viral line-
age, although our sample size is too low to statistically confirm this
trend at present.
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We propose that environmental destruction and migration of
humans and hemerophile reservoir hosts, such as dogs and rats36,63,
during the past century may have resulted in the displacement of L.
braziliensis and their viruses out of the tropical rainforests. In the 19th
century and earlier, the Peruvian Amazon region was sparsely popu-
lated and poorly integrated into the Peruvian nation64. Ever since the
rubber boom in the 1870s, Peru has been characterized by migrations
of inhabitants (for the purposes of farming, agriculture or mining) and
military personnel (for the purpose of narcotic and guerilla control) to
Amazonian departments, includingmigrations fromAndeanhighlands
to Amazon regions and also between the latter64. The activities of the
migrants were often linked to an expansion of deforested areas65, a
known risk factor for vector-borne diseases. In addition, it was shown
that recent labor migrants (arrival <5–6 years) working in the Peruvian
Department of Madre de Dios (for e.g., gold mining, woodwork) were
more susceptible to Leishmania infections compared to residents. This
was mainly linked to the poorer living conditions of migrants (e.g.,
sleeping outdoors or in camps, lack of sanitation) compared to resi-
dents (e.g., better housing conditions, higher immunological
protection)66,67. Humanmigrations may thus play an important role in
the dissemination and secondary contacts of the zoonotic Leishmania
parasites and their viruses throughout the region.

In conclusion, our results show that L. braziliensis hybrids are
associated with an increased prevalence, diversity and spread of LRV1.
This may have profound epidemiological consequences in the region
because the presence of LRV1 has been linked to the severity of human
leishmaniasis23,25,26,51 and drug treatment failure21,22,54. Within a broader
context, our work adds to a growing body of evidence indicating that
parasite hybridization is a major public health concern68.

Methods
Ethics statement
Samples were obtained from cutaneous and muco-cutaneous leishma-
niasis patients who presented at health facilities for care. Sample col-
lection was done during previous studies (IC 18.CT 96.0123 and ICA4-
CT-2001-10076) on the genetics and epidemiology of leishmaniasis in

Peru and Bolivia29–33. At the time, informed consent was obtained from
all study participants. The study protocol was authorized by the ethical
committees of Peruvian (Instituto de Medicina Tropical Alexander von
Humboldt, Lima) and Bolivian (Centro Universitario de Medicina Tro-
pical, Cochabamba) partners, and approved by the Institutional Review
Board of the Antwerp Institute of Tropical Medicine.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Nucleic acid extraction and sequencing of DNA parasites and
their dsRNA viruses
This study included 79 L. braziliensis isolates (Supplementary Data 1)
from Peru (N = 55) and Bolivia (N=24) that were sampled within the
context of various studies on the genetics and epidemiology of leish-
maniasis. In Bolivia, the majority of isolates (N= 21) were sampled
between 1994 and 2002within the context of a cutaneous leishmaniasis
outbreak in the Isiboro National Park (Department of Cochabamba).
Two isolates were sampled between 1984 and 1985 within the Santa
Cruz Department and one is of unknown origin (Supplementary Fig. 1).
In Peru, more than half of the isolates were sampled between 1991 and
2003 in the Cusco Department (N= 29), mainly from the Paucartambo
province (N =25). The remaining 26 isolates originated from Madre de
Dios (N=9), Ucayali (N= 5), Huanuco (N=4), Junin (N=4), Loreto
(N=2), Pasco (N= 1) and Cajamarca (N= 1) (Supplementary Fig. 1).

All 79 isolates were cultured for 3–4 days in the HOMEMmedium
(Gibco) with Fetal Bovine Serum (FBS; 20%) at the Antwerp Institute of
Tropical Medicine. Parasites were subjected to a small number of
passages (mean = 18 ± 5) to reduce potential culture-related biases in
parasite genomic characterization69. Parasite cells (ca. 107−108 para-
sites/ml)were centrifuged into dry pellets and their DNAwas extracted
using the QIAGEN QIAmp DNA Mini kit following the manufacturer’s
protocol. At theWellcome Sanger Institute, genomic DNAwas sheared
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into 400–600 base pair fragments by focused ultrasonication (Covaris
Inc.), and amplification-free Illumina libraries were prepared70. One
hundred base pair paired-end reads were generated on the HiSeq
2000, and 150bp paired end reads were generated on the HiSeq ×10,
both according to the manufacturer’s standard sequencing protocol.

Previouswork has shown that 31 out of the 79 isolateswere positive
for LRV122. The majority of these LRV1+ isolates originated from Peru
(N=27) while the remaining four were sampled in the Isiboro National
Park (Cochabamba, Bolivia) (Supplementary Fig. 1).More than half of the
Peruvian LRV1+ isolates originated from Cusco (N= 15) of which 11 were
sampled in the Paucartamboprovince. LRV1was also detected in isolates
from Madre de Dios (N= 5), Junin (N=3), Cajamarca (N= 1), Huanuco
(N= 1), Loreto (N= 1) and Ucayali (N= 1) (Supplementary Fig. 1).

The 31 LRV1-positive isolates22 were grown, as above, for 2–3weeks
(mean passage number = 18 ± 5) at the Antwerp Institute of Tropical
Medicine, ensuring high parasite yields (ca. 107−108 parasites/ml). Iso-
lation of dsRNA was performed as previously described71. In short,
isolation involved a TRIZOL reagent (Invitrogen) RNA extraction fol-
lowed by a RNase-free DNase I (NEB) and a S1 nuclease (Sigma-Aldrich)
treatment along with an additional purification step (Zymoclean Gel
RNA Recovery kit; Zymo Research). Double-stranded RNA of approxi-
mately 5.2 kb was visualized on 0.8% agarose gel (TAE buffer) stained
with ethidium bromide. Extracts of dsRNA were sequenced at Genewiz
(Leipzig, Germany) using the NovaSeq 6000 platform (Illumina) gen-
erating on average 35,665,319 150 bp paired end reads per isolate.

Bioinformatics and population genomics of L. braziliensis
Sequencing reads were mapped against the L. braziliensis M2904
reference genome, as conducted earlier33, using SMALT v.0.7.4 (https://
www.sanger.ac.uk/tool/smalt-0/). The reference genome assembly
comprises 35 chromosomes (32.73Mb) and a complete mitochondrial
maxicircle sequence (27.69 kb), and is available at https://tritrypdb.
org/33,72 as TriTrypDB-46_LbraziliensisMHOMBR75M2904_2019. Genome
wide variant calling (SNPs, INDELs) was done using GATK v.4.0.1.073,74.
More specifically, we used GATK HaplotypeCaller for generating geno-
type VCF files (gVCF) for each isolate. Individual gVCF files were com-
bined and jointly genotyped usingCombineGVCFs andGenotypeGVCFs,
respectively. SNPs and INDELs were separated using SelectVariants. Low
quality variants were excluded using GATK VariantFiltration following
GATK’s best practices75 and BCFtools v.1.10.276 view and filter. Specifi-
cally, SNPswere excludedwhenQD<2, FS > 60.0, SOR>3.0,MQ<40.0,
MQRankSum<−12.5, ReadPosRankSum<−8.0, QUAL<250, format
DP< 10, format GQ<25, or when SNPs occurred in clusters (Clus-
terSize=3, clusterWindowSize = 10). INDELs were excluded whenQD<2,
FS < 200.0, ReadPosRankSum<−20.0. The final sets of SNPs and INDELs
were annotated using the M2904 annotation file with SNPEFF v4.577. At
heterozygous SNP sites, the frequencies of the alternate allele read
depths34 were calculated using the vcf2freq.py script (available at
github.com/FreBio/mytools).

Chromosomal and gene copy number variation were estimated
using normalized read depths. To this end, per-site read depths were
calculated with SAMtools depth (-a option)76. Haploid copy numbers
(HCN) were obtained for each chromosome by dividing the median
chromosomal read depth by the median genome-wide read depth.
Somy variation was then obtained by multiplying HCN by two
(assuming diploidy). To obtain gene HCN, the median read depth per
coding DNA sequence (CDS) was divided by the median genome-wide
read depth. The HCN per CDS were summed up per orthologous gene
group. Gene copy number variations were then defined where the
z-score was lower than −1 (deletions) or larger than 1 (amplifications).

A NeighborNet network was reconstructed based on uncorrected
p-distances (i.e., the proportion of sites where two sequences are dif-
ferent) with SplitsTree v.4.17.035. The population genomic structure
was examined with ADMIXTURE v.1.3.078 and fineSTRUCTURE v.4.1.179.
ADMIXTURE was run assuming 1 to 10 populations (K), performing a

5-fold cross-validation procedure, and after removing SNPs with strong
LD as identified with plink v.1.980 (--indep-pairwise 50 10 0.3). The
similar order of magnitude for the CV error values of K = 1–3 (Supple-
mentary Data 14) prompted us to investigate the sub-structuring of L.
braziliensis for K = 2 and K = 3. CHROMOPAINTER analysis (as part of
fineSTRUCTURE) was run to infer the ancestry based on haplotype
similarity. To this end, individual genotypes were phased with BEAGLE
v.5.281 using default parameters, after which fineSTRUCTURE was run
using 8 million MCMC iterations with 50% burn-in, and 2 million
maximization steps for finding the best tree topology82. Local ancestry
was assigned with PCAdmix83 using phased genotype data (i.e., hap-
lotypes) as obtained with the BEAGLE v5.481. F3-statistics were calcu-
lated with Treemix v1.1384. Finally, Hardy-Weinberg equilibrium (HWE)
was assessed by calculating the per-site inbreeding coefficient as Fis = 1
–Ho/He; with Ho representing the observed heterozygosity andHe the
expected heterozygosity. Decay of LD was calculated and visualized
using PopLDdecay85. To control for spatio-temporal Wahlund effects,
we calculated Fis and LD decay using subsets of isolates that were
sampled close in time (year of isolation) and space (locality), and taking
into account population genomic structure.

To investigate the spatio-environmental impact on genetic varia-
tion among the three ancestral parasite populations we calculated
geographic distances among sampling locations and extracted 19
bioclimatic variables of the WorldClim2 database86. We firstly investi-
gated the role of geography on the genomic differentiation of the
ancestral components through linear and non-linear regression ana-
lyses of distance matrices (Supplementary Methods). Secondly, we
used RDA87 and GDM88 to test the impact of environmental differences
and geographic distance on parasite genetic distance. To account for
model overfitting and multicollinearity, we performed two variable
selection approaches (mod-A, mod-M) (Supplementary Methods).
ENM was done based on partially jittered parasite occurrence data
(excl. hybrid parasites), to account for the spatial uncertainty of iso-
lates with non-unique coordinate pairs, along with present-day and
past bioclimatic variables using Maxent v.3.4.3, as implemented in the
‘dismo’ R package89,90. A more detailed description on the landscape
genomic analyses (variable selection, RDA, GDM and ENM) is pre-
sented in the Supplementary method section. Finally, we compared
the geographic ranges between parasite groups bymeans of a Kruskal-
Wallis test (‘stats’ R package91) followed by pairwise Dunn’s tests (‘FSA’
R package92) with Benjamini-Hochberg (BH) corrected p-values.

Bioinformatics and phylogenetic analyses of LRV1
Raw RNA sequencing reads were trimmed and filtered with fastp93

using the following settings: a minimum base quality (-q) of 30; the
percentage of unqualified bases (-u) set to 10; per read sliding window
trimmingbasedonmeanquality scores (-5, front to tail; -3, tail to front)
with a window size (-W) of 1 and mean quality score (-M) of 30; right-
cutting reads (--cut_right) per 10 bp windows (--cut_right_window_size)
when mean quality score (--cut_right_mean_quality) is below 30; only
considering reads between 100 (-l) and 150bp (-b). LRV1 sequences
were assembled de novo with MEGAHIT94 and identified using
BLASTn95 against conventional LRV1 reference genomes LRV1-196 and
LRV1-497 (accession numbers M92355 and U01899, respectively). In
order to check and improve the quality of the assemblies, trimmed
reads were mapped against the LRV1 contigs with SMALT as described
above, with theminimal nucleotide identity (-y) set to 95%. Alignments
were examined with Artemis98 and used to improve assemblies with
Pilon v.1.2399. Genome sequences were aligned using the L-INS-i algo-
rithm in MAFFT v.7.49100.

For comparative purposes, we included 26 (near-) complete LRV1
genomes and 13 partial LRV1 sequences of L. braziliensis (N = 8), L.
guyanensis (N = 26) and L. shawi (N = 1) from French Guiana, Brazil and
Suriname55,56,96,97. Multiple sequence alignments were generated by
trimming to the minimum sequence lengths and re-aligning (i) all
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available genomes to 5189bp sequences (N = 57) and (ii) all available
sequences to 755 bp sequences (N = 70). Maximum likelihood (ML)
trees were generated using IQ-TREE v.1.6.12101 and 100 bootstrap
replicates. Based on the lowest Bayesian Information Criterion, the
ModelFinder module102 revealed GTR + F +R4 as the best substitution
model for the genomealignment. TheGTR + F + R4 substitutionmodel
was also applied on the partial sequence alignment for consistency.
Pairwise genetic distances among LRV1 genomes were calculated with
the ‘ape’ R-package103 (model = ‘raw’). Viral genomes with a genetic
distance below 0.09 (i.e., 9% of the sites that are dissimilar among two
genomes) were grouped into distinct viral lineages. Nucleotide diver-
sity and Fst statistics were calculated within and between viral lineages
using the ‘PopGenome’package in R104 while recombinationwas tested
by PHI tests implemented in SplitsTree35,105.

Viral prevalences between parasite groups were compared
through a Fisher’s exact test (‘stats’ R package91) followed by pairwise
Fisher’s exact tests (‘fmsb’ R package106) with BH corrected p-values.
We also compared the viral prevalence between the combined sets of
the genetically distinct (PAU, HUP, INP) and hybrid (ADM,UNC) groups
through a chi-squared test (‘stats’ R package91). The viral lineage
diversity between parasite groups was described by species richness
and the Shannon diversity index (‘vegan’ R package87). Finally, we
investigated the extent of treatment failure associated with LRV1
through an exact logistic regression (‘elrm’ R package107) with 10,000
MCMC iterations (2000 burn-in).

Viral phylogeographic inference in continuous space
To reconstruct the dispersal history of LRV1, we performed a Bayesian
phylogeographic analysis in a continuous spatial framework (i.e.,
based on coordinate data) using BEAST v.1.10.4108 and the BEAGLE
library v.4.0.0109,110, following a previously publishedprotocol111. Due to
a lack of a temporal signal in the data, sampling dates were set to zero
(default setting). The nucleotide substitutionmodelwas set to theGTR
substitution model with the base frequencies set to be empirically
calculated and the site heterogeneity model to Gamma with four dis-
crete categories. The trait evolutionary model (i.e., substitutionmodel
for location data) was set to the lognormal Relaxed Random Walk
model where the bivariate trait represents longitude and latitude.
Additionally, a random jitter (factor = 0.01) was added to the tips to
add a slight noise to the data to avoid poormodel performance, which
is recommendedwhen not all sampling points have unique coordinate
pairs111. Next, the uncorrelated relaxed clockmodel112 was selected and
for the location partition all ancestral states were reconstructed. All
priors and operator parameters were retained at their default values.
Markov chain Monte Carlo sampling was run over ten million states,
sampled every 1000 states, with a 10% burn-in. Subsequently, the
posterior tree distribution was summarized using BEAST’s TreeAnno-
tator constructing a maximum clade credibility tree.

BEAST was run ten times: one for the entire LRV1 phylogeny fol-
lowed by a stepwise exclusion of each viral clade in order to compare
the inferreddiffusioncoefficients between thedifferent partitions. The
differences in diffusion coefficient between the different phylogeny
partitions were tested by means of a Kruskal-Wallis test followed by
pairwise Dunn’s tests with BH corrected p-values.

Co-phylogenetic analysis of LRV1 and Leishmania
Co-phylogenetic analyses were done at both the species (between
LRV1 infecting L. braziliensis and L. guyanensis) and at the population
(LRV1 infecting L. braziliensis from Peru and Bolivia) level. These ana-
lyseswereperformedusing the phytools Rpackage113. To assess the co-
evolutionary history of LRV1 with both parasite species, we com-
plemented our dataset with 24 LRV1 genomes and 19 L. guyanensis and
1 L. braziliensis SNP genotypes from French Guiana (N = 19) and Brazil
(N = 1)55 (L. guyanensis reads accession: SRA - PRJNA371487; LRV1
genome accessions: GenBank - KY750607 to KY750630 [https://www.

ncbi.nlm.nih.gov/nuccore/KY750607,KY750608,KY750609,
KY750610,KY750611,KY750612,KY750613,KY750614,KY750615,
KY750616,KY750617,KY750618,KY750619,KY750620,KY750621,
KY750622,KY750623,KY750624,KY750625,KY750626,KY750627,
KY750628,KY750629,KY750630]). The phylogenetic trees were tested
for topological similarity calculating the Robinson-Foulds distance114,
using the phytools package113, between both trees with comparison
against a null distribution of 1000 permuted un-correlated trees. For
LRV1 we reconstructed a ML tree as described above, including the 23
LRV1 genomes of L. guyanensis and 32 LRV1 genomes of L. braziliensis.
For Leishmania, sequence reads of L. guyanensiswere mapped against
the M2904 reference genome and GATK Haplotypecaller was run as
described above. We then performed joint genotyping on a dataset
including the 19 L. guyanensis genomes and 80 L. braziliensis genomes.
SNPs were filtered following similar criteria as described above
(QD < 2, FS > 200.0, SOR > 3.0, MQ< 40.0, MQRankSum< −12.5,
ReadPosRankSum< −8.0,QUAL < 250, infoDP < 10,ClusterSize = 3 and
ClusterWindowSize = 10). The LeishmaniaMLtreewas generatedusing
IQ-TREE based on 7571 jointly called bi-allelic SNPs with 100 bootstrap
replicates and GTR + F +R5 as best performing substitution
model101,102. For the co-phylogenetic reconciliation at the intraspecific
level, we focused on phylogenies generated for our dataset of L. bra-
ziliensis and LRV1 from Peru and Bolivia. Specifically, we used the
GTR + F + R4 ML tree generated with IQ-TREE for LRV1 and the bifur-
cating tree generated by fineSTRUCTURE for L. braziliensis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The metadata used for this study was the collection site for the 79 L.
braziliensis isolates, which is given for each sample in Supplementary
Data 1 (provided as Source Data file). Genomic sequence reads of the
79 sequenced L. braziliensis genomes are available in the European
Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/home) under
accessionnumber PRJEB4442. The assembled sequencesof the 31 LRV1
genomes are available in GenBank (https://www.ncbi.nlm.nih.gov/
genbank/) under accession numbers OQ673070-OQ673100 [https://
www.ncbi.nlm.nih.gov/nuccore/OQ673070,OQ673071,OQ673072,
OQ673073,OQ673074,OQ673075,OQ673076,OQ673077,OQ673078,
OQ673079,OQ673080,OQ673081,OQ673082,OQ673083,OQ673084,
OQ673085,OQ673086,OQ673087,OQ673088,OQ673089,OQ673090,
OQ673091,OQ673092,OQ673093,OQ673094,OQ673095,OQ673096,
OQ673097,OQ673098,OQ673099,OQ673100]. Source data are pro-
vided with this paper.

Code availability
Key analyses scripts and input data for the landscape genomic analyses
are available from https://github.com/sheerenbiol/LandGenLeish.
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