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Letter
In their recent opinion paper [1], Sterkers et al. review
findings on intra-strain mosaic aneuploidy in Leishmania
and present a challenging model predicting the conse-
quences of this phenomenon for the genetic diversity ob-
served within a given strain: this model leads to a loss of
heterozygosity in clonal division, and to a gain of hetero-
zygosity in automixy. They review results largely based on
an elegant fluorescence in situ hybridization (FISH) that
measured, at individual cell level, the somy of individual
chromosomes within five laboratory strains from five dif-
ferent species propagated in vitro as promastigotes. While
their results demonstrate the power of FISH, the method is
time-consuming and only ten chromosomes (out of 34–36,
depending on the species) are currently monitored at a
time. Whole genome sequencing (WGS) is an alternative
approach to assess ploidy, by measuring the relative
depth of mapped reads [2]. While single-cell genomics
approaches are becoming practicable [3], current sequenc-
ing approaches analyze a population of cells present in a
given sample, thereby providing a cumulative view of the
somy of each chromosome, which is averaged across the
(potentially heterogeneous) parasite population included
in the sample. As Sterkers et al. rightly point out, popula-
tion averaging is an important drawback of WGS in the
presence of intra-strain mosaic aneuploidy, but we none-
theless feel that the statement that global approaches like
WGS are ‘less discriminating than individual cell analysis’
[1] should be interpreted with care, and that the two
methods should be considered as complementary.

We think WGS offers a number of advantages, which
can be used to complement FISH. First, in a single assay,
WGS provides a snapshot of all the chromosomes, unlike
FISH, which can only provide a view of chromosomes
targeted by probes. Second, by measuring read-depth along
the whole chromosome, WGS provides unbiased results not
hindered by local copy number variations, frequently ob-
served in Leishmania [2] and recently shown to occur
widely in the genome [4]. This bias may likely affect regions
targeted by FISH probes, which is why in Leishmania it
might be recommended to use several FISH probes per
chromosome. Third, although somy results from WGS are
cumulative, they allow for the identification of chromo-
somes showing the largest deviations from disomy. For
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instance, a somy value of three either implies that a
majority of cells are likely to be trisomic for that chromo-
some or that there are two sub-populations with equal
number of cells showing disomic and tetrasomic chromo-
somes, resulting in a similar total chromosomal gene
dosage in the parasite population. This total dosage is
particularly relevant to detect adaptive changes occurring
at the cell population level, such as during drug resistance
induction experiments [5]. Fourth, in the context of studies
on individual gene dosage, WGS allows for the correct
identification of mechanisms beyond aneuploidy that
may also contribute to adaptive changes such as circular
episomes, amplifications within tandem gene arrays, or
large linear amplicons [2,5]. Fifth, WGS allows for cheap
and convenient high-throughput exploration of inter-
strain diversity in natural populations. A report on 17 clin-
ical isolates of L. donovani showed a cumulative somy level
of two in nine chromosomes, a level of four in chromosome
31, and a variable (fluctuating between two and four) somy
level in the 26 remaining chromosomes across the different
lines [2]. Overall, each isolate showed a different aneuploi-
dy pattern. A similar observation has also been made in L.
infantum [6]. Finally, sequence data simultaneously reveal
aneuploidy, genotype, and allele frequencies of the same
population of cells. These allele frequencies can provide
valuable information in interpreting read-depth estimates
of somy when there is mosaicism in chromosome ploidy. We
believe these types of data will be instrumental in fully
understanding the population genetics of Leishmania, and
to test ideas such as the parasexual model proposed by
Sterkers et al. Indeed, WGS could allow direct testing of
how changes in aneuploidy correlate with changes in het-
erozygosity.

FISH is currently the only method that would allow
further dissection of these results at the single-cell level,
but an emerging technology that might combine the ability
of FISH to interrogate intra-strain mosaicism in somy with
the advantages of a sequencing approach is single-cell
genome sequencing (SCGS), where DNA is extracted
from isolated, individual cells before amplification and
sequencing. This approach has been successfully applied
to bacterial cells [7], a number of microbial eukaryotes [8],
including Plasmodium [9], and to human cells, specifically
to detect aneuploidy and structural variation [10]. While
great care is needed in both generating SCGS libraries and
in the interpretation of results from these libraries, in light
of a number of biases that can be introduced during the
required DNA amplification step [3,10], developments in
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both data analysis and molecular biology methods [11] are
making these approaches increasingly routine.

We agree that aneuploidy constitutes a large source of
adaptability, both through gene dosage effects [12] and
through the shaping of genetic heterogeneity present with-
in a single species [1]. However, in order to fully under-
stand ploidy, WGS and single-cell approaches like FISH or
SCGS should currently be applied together as complemen-
tary methods to answer major biological questions.
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