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From sequence reads to evolutionary inferencesFrom sequence reads to evolutionary inferencesFrom sequence reads to evolutionary inferencesFrom sequence reads to evolutionary inferences    
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15.115.115.115.1    IntroductionIntroductionIntroductionIntroduction    

The history of molecular systematics can be caricatured as one of ever-increasing depth 

of sequence data, analysed by ever more complex models.    In this respect, sequence data 

from whole genomes are the ultimate source of molecular markers that can act as 

characters for phylogenetic or population genetic analysis. While complete genomes in 

the strictest sense are only available for very few species, and fragmentary genome 

assemblies that capture the entire genome, but in many pieces, are also fairly restricted 

in scope beyond the prokaryotes, this is changing rapidly. More-or-less shallow genomic 

data, for example from EST sequencing projects, high-throughput transcriptome 

sequencing or some other kind of reduced-representation sequencing (see review by 

Davey et al. 2011) are now becoming widespread and of increasing utility in 

systematics and other areas of evolutionary biology. Studies using these kinds of data to 

reconstruct relationships between species have become known as ‘phylogenomics’, 

although the original usage of the term referred to using phylogenetic approaches to 

infer gene function (Eisen 1998), and the other parts of the research program proposed 

under this name (Eisen and Fraser 2003) have been subsumed into the broader study 

of comparative and evolutionary genomics. Moreover, the term ‘phylogenomics’ has, 
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perhaps, become over-extended, as datasets that claim this title vary in size from as few 

as 11 markers (Horvath et al. 2008) or as little as 30kb of sequence data (Wiegmann et 

al. 2011), and in eukaryotic organisms, the ‘genomes’ in question are very often 

organelle (mitochondrial or chloroplast) genome sequences. Sequence data from whole 

genomes have the potential to be a rich source of molecular phylogenetic markers for 

any systematic question, but there are two areas in which large-scale, highly multi-locus 

data appears most valuable – occupying the two extremes of the range of time scales 

over which inference about evolutionary history is made.    

Genome-scale data promise the ability to resolve ancient divergences, and in 

particular, fairly rapid (at least in geological terms) ancient radiations that have been 

difficult to reliably reconstruct with more limited molecular datasets. In this context, 

phylogenomic data have been applied to a wide taxonomic range of phylogenetic 

questions. Early usage of whole genome data were in prokaryote systematics (e.g. 

Daubin et al. 2002; Daubin et al. 2002). Within the eubacteria genomic data has 

produced results largely congruent with the previously governing paradigm derived 

from ribosomal RNA (rRNA) data, but our understanding of the relationship between 

eubacteria, archaebacteria and eukaryotes – the most ancient phylogenetic divergence 

of all – has been greatly altered by multilocus and genomic data (Cox et al. 2008; 

Williams et al. 2012). In fact, whole-genome sequencing of microbial pathogen 

populations has now sufficiently widespread that it has become a routine tool in 

understanding the epidemiology of viral and bacterial pathogens (this volume, Chapter 

5), and is emerging in eukaryotic parasites (Downing et al. 2011; Manske et al. 2012). In 

other areas, these kind of data have radically altered our picture of animal evolution 
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(Edgecombe et al. 2011), as well as resolving more-or-less deep divergences within 

animals (Struck et al. 2011; Wiegmann et al. 2011) and plants (Timme et al. 2012; Qiu 

et al. 2006; Lee et al. 2011). 

On a far more recent timescale, many loci are needed to reliably reconstruct the 

history of populations, as the random process through which different alleles are 

inherited means that any individual locus is a poor marker of the history of the genomic 

ancestry of a population (e.g. Nichols 2001). These kinds of analyses require rich 

datasets of multiple genomes from a single species or population, and so have to date 

largely been restricted to analysis of human population history, but as whole genome 

re-sequencing becomes increasingly accessible, scientists working on any group of 

organisms will be able to benefit from population genomic data to understand the 

phylogeography, population genetics and adaptation of non-model systems (this 

volume, Chapter 10). 

15.215.215.215.2    Generating the data: choosing between Generating the data: choosing between Generating the data: choosing between Generating the data: choosing between 
sequencing technologies and targetssequencing technologies and targetssequencing technologies and targetssequencing technologies and targets    

Sequencing technology is changing fast (Thompson and Milos 2011), and any attempt 

here to propose particular choices of sequencing approach are likely to be out-of-date 

by the time this volume is published. At the time of writing, the choice appears to be 

between sequencing technologies that are relatively low-throughput and expensive per 

nucleotide sequenced, and relatively inaccurate in terms of the reliability of the 

sequence produced, but that produce long sequencing reads, and technologies 

producing more data much more cheaply, but only capable of producing short read 
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lengths of contiguous bases (this volume, Preface). The choice of appropriate 

technology will depend on budget, the specific technical details of the technologies at 

the time any choice is made, and (of course) availability – although sequencing is likely 

to be increasingly out-sourced and so a choice of technology platforms likely to be 

available commercially to many researchers. A more scientific consideration is whether 

a high-quality reference genome is available for the species being targeted, and what 

kind of variants are of interest. Short-read sequencing is likely to be an attractive choice 

for the forseeable future if a good reference is available, where single nucleotide 

polymorphisms are of primary interest, and if the intention is to generate whole-

genome data for substantial numbers of individuals, particularly for organisms with 

relatively large genome sizes. If more complex, structural or insertion-deletion variants 

are of more interest, and if the intention is to assemble genomes rather than rely on 

calling variants, then longer reads may be very valuable, and the additional cost (or 

reduced number of samples, or lower coverage) may be a worthwhile trade-off. 

Another decision to make is whether to attempt whole-genome sequencing, or 

just to target particular regions or subsets of the genome. Clearly genome-wide data 

comes at a significant cost, particularly in eukaryotes with larger genome sizes, and in 

these organisms much of the genome may be repetitive (at least 50% and perhaps as 

much as 70% of the human genome is derived from repeats; Treangen and Salzberg 

2011; de Koning et al. 2011), and so may be both relatively uninteresting and difficult to 

work with for down-stream analyses, where repetitive genomic regions are often 

ignored anyway.    A number of approaches have been proposed for ‘reduced 

representation sequencing’, targeting either particular regions of genomes, or particular 
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partitions of the genomes. At one end of this continuum, of course, are PCR-based 

approaches amplifying relatively few loci, building on traditional single-locus studies in 

a natural way (e.g. Bybee et al. 2011). Technologies exist for ‘massively parallel’ PCR 

amplification, exploiting either highly multiplexed traditional PCR (e.g. Nguyen-Dumont 

et al. 2013) or microfluidic technology (e.g. Tewhey et al. 2009) to amplify tens, 

hundreds or up to low thousands of loci from similar numbers of samples in parallel, 

but these are still some way from being truly ‘genomic’ approaches. A PCR-free 

approach is to design oligonucleotide ‘baits’ targeting particular regions of the genome, 

and then using hybridization to select the regions to be sequenced (e.g. Gnirke et al. 

2009). Good reviews of these approaches and others have been provided by Mamanova 

et al. (2010) and Turner et al (2009).    

For any such ‘targeted’ approaches, the success of the primers/baits is likely to 

be lower for targets that are more distantly related to the reference genome used to 

design them, and – perhaps more worryingly for some applications – to do so in a 

biased fashion, so that conserved regions will be more easily targeted in distantly 

related genomes than others. This has been exploited to design approaches to target 

homologous regions across taxonomic groups (Smith et al. 2013; Lemmon et al. 2012), 

but these data will be unsuitable for some applications as more variable regions of the 

genome will be less accessible. These approaches are a fairly natural evolution of 

‘traditional’ molecular systematics approaches using PCR to amplify loci of interest, 

adapting this to the much larger throughput of next-generation sequencing 

technologies. Less biased genome-wide approaches rely on different ways of 

sequencing short ‘tags’ downstream of restriction sites. Variations on this idea of 
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genome reduction or genome filtering have been around for some time (e.g. Altshuler et 

al. 2000; Whitelaw et al. 2003), but recent protocols (e.g. Baird et al. 2008) have made 

this an increasing popular approach in evolutionary biology (see Davey et al. 2011 for a 

review of a number of related approaches; Davey et al. 2011). An alternative is to target 

exonic sequence only, by sequencing and assembling transcriptomic (RNAseq) data    

(Gayral et al. 2013). . . . In some circumstances, non-sequencing based approaches to 

genotyping might be of interest, such as oligonucleotide arrays for detecting known 

SNPs or other SNP genotyping technologies (Perkel 2008), but these technologies can 

only ascertain known variants, that must be discovered by some other approach (i.e. by 

sequencing) and they are unlikely to remain competitive with sequencing-based 

techniques for most applications as sequencing costs drop and throughput increases. 

Many of these alternatives are discussed and compared at greater length in other 

reviews of this area (e.g. Lemmon and Lemmon 2013; McCormack et al. 2013; Godden 

et al. 2012). 

15.315.315.315.3    Making sense of the dataMaking sense of the dataMaking sense of the dataMaking sense of the data    

Initial quality control of next-generation sequencing data is to confirm that the 

molecular biology processes involved in creating and sequencing the DNA library have 

been successful. A first step involves confirming the yield and quality of sequencing 

reads, and for some technologies confirming that the sequence reads are of the desired 

size. This step can also involve identifying and either removing or trimming low-quality 

reads or reads contaminated with sequence from the adapters ligated onto the target 

DNA during library preparation, and detecting or (more controversially) attempting to 
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correct biases caused by primers used in PCR of libraries, or in response to GC-content 

variation. A second step is to confirm that the library represents the target organism 

and that reads are in the expected orientation and distance apart for the intended 

sequencing strategy – this step is more computationally intensive and involves in some 

sense mapping the obtained reads (performing pairwise alignments between the reads 

and known sequences) against known data from the target organism or from related 

species. Mapping at least a random sub-sample of reads from a library against a larger 

set of off-target genomic data, representing possible sources of contamination such as 

yeast or bacterial species commonly used in molecular biology laboratories, or more 

specific cases such as against the host genome in the case of parasites or pathogens can 

also be useful in identifying contamination or other problems such as mislabeling of 

samples. Computationally efficient short-cuts that lose relatively little sensitivity are 

available to allow sequencing libraries to be routinely screened in this way (Wood and 

Salzberg 2014). A number of packages exist for more-or-less easy to interpret plots of 

base composition, sequence quality and throughput for next-generation sequencing 

platforms, including some packages with specific features useful for RNAseq data 

(DeLuca et al. 2012) and some QC work may be performed by sequencing providers if 

sequencing is outsourced. A comprehensive review (Zhou and Rokas 2014) includes 

further details of some of these steps, and reviews software available for each of these 

steps. An entire journal issue recently presented some detailed investigations of several 

QC procedures (Watson 2014), for example showing that even a poor-quality, 

automated assembly can be a useful substrate for quality assurance of sequencing data 

(Trivedi 2014). 
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Once high-quality sequence data have been generated, a number of different 

strategies are possible in moving from sequence reads to variants (Figure 1). 

Fig 15.1    Reads, assembly and variation. A sequencing 
library is generated by first fragmenting a target genome 
at random, then generating sequence data, usually from 
both ends of each fragment (paired-end sequencing). The 
next step is either to identify overlapping reads within 
these data and merge them into a de-novo assembly, or 
to map the reads against a reference genome and 
identify variants. An assembly consists of contigs (in 
which sequence data is from a contiguous run of 
overlapping reads) and scaffolds, where contigs are 
joined by sequencing gaps that link paired reads, but for 
which no sequencing data is available (dashed line within 
scaffold). Red lines on the figure show positions of SNPs 
where the sequenced genome differs from the reference. 
Note also a deletion in the sequenced genome relative to 
the reference. This is identified either as regions where 
no sequence data has been assembled, or where both 
read and fragment coverage drop to zero when read pairs 
are mapped against the reference. 

15.3.115.3.115.3.115.3.1    Mapping and variant callingMapping and variant callingMapping and variant callingMapping and variant calling    

If genome sequence data are available for a closely related species to that being 

sequenced, an appropriate strategy is to map the reads against this genome, and then 

call SNP (single-nucleotide polymorphism) and copy-number variants using this. 

Mapping consists of taking each read and finding the position in a genome sequence to 

which this read is most similar, and then finding an alignment of the read to this 

position. This two-step approach is critical, computationally, as datasets may consist of 

millions or even billions of sequence reads, and alignment methods are too slow to 

place these reads. Two recent reviews (Fonseca et al. 2012; Li and Homer 2010) 
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describe the variety of short read mapping algorithms and the software that 

implements them. 

Variant calling is also a complex and fast-evolving area, as algorithms and 

software attempt to keep up with changes in sequencing technology and to the reality of 

large-scale resequencing projects directed at understanding population variation (see 

review by Nielsen et al. 2011; Nielsen et al. 2011). The basic task is to identify sights 

where single bases differ between the sequenced samples and the reference genome (a 

single-nucleotide polymorphism or SNP). More complex variants can be called, such as 

larger structural variants like large repeats or transpositions, and a great deal of 

computational research is ongoing into algorithmic approaches to discover these kinds 

of variants (Yalcin et al. 2012; Medvedev et al. 2009) . In general, discovery of large-

scale variants will require long sequencing reads or long-fragment paired end sequence 

data. Many of the methodological developments in this area are being driven by the 

human genetics community, and in particular by large-scale human diversity projects 

such as the 1000 genomes project and UK10K (The 1000 Genomes Project Consortium 

2013), but analysis of human data is made easier by some resources not available for 

most, if not all, other organisms – for example, the availability of large pre-existing data 

sets of validated SNP calls and fine-scale information about patterns and rates of 

recombination, both of which can be used to inform variant calling. Another product of 

large-scale human genome re-sequencing projects is the development of a series of file 

formats for different kinds of sequence and derived downstream data that, if not quite 

adopted standards, are convenient as they are written and read by a number of 

different software packages and are supported by utilities to interrogate these files and 
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convert to and from other formats. Table 15.1 lists some of these file formats and 

relevant software. 

Begin Table 15.1Begin Table 15.1Begin Table 15.1Begin Table 15.1    

Table 15.1Table 15.1Table 15.1Table 15.1 
Most important file formats for genomic and sequence data, together with example Most important file formats for genomic and sequence data, together with example Most important file formats for genomic and sequence data, together with example Most important file formats for genomic and sequence data, together with example 
software packages that write data in these formats or allow easy interrogation or software packages that write data in these formats or allow easy interrogation or software packages that write data in these formats or allow easy interrogation or software packages that write data in these formats or allow easy interrogation or 
manipulation of files.manipulation of files.manipulation of files.manipulation of files.1111(Cock et al, 2010)(Cock et al, 2010)(Cock et al, 2010)(Cock et al, 2010), 2, 2, 2, 2(Li et al, 2009), (Li et al, 2009), (Li et al, 2009), (Li et al, 2009), 4444(Danecek et al, 2011),(Danecek et al, 2011),(Danecek et al, 2011),(Danecek et al, 2011),5 5 5 5 

(Gremme, Steinbiss, and Kurtz, 2013) ,(Gremme, Steinbiss, and Kurtz, 2013) ,(Gremme, Steinbiss, and Kurtz, 2013) ,(Gremme, Steinbiss, and Kurtz, 2013) ,6666(Quinlan and Hall, 2010). Bioinformatics (Quinlan and Hall, 2010). Bioinformatics (Quinlan and Hall, 2010). Bioinformatics (Quinlan and Hall, 2010). Bioinformatics 
toolkits for number of programming languages also provide libraries to access and toolkits for number of programming languages also provide libraries to access and toolkits for number of programming languages also provide libraries to access and toolkits for number of programming languages also provide libraries to access and 

manipulate these data, e.g. BioPerl (Stajich et al,manipulate these data, e.g. BioPerl (Stajich et al,manipulate these data, e.g. BioPerl (Stajich et al,manipulate these data, e.g. BioPerl (Stajich et al,    2002), Biopython (Cock et al, 2002), Biopython (Cock et al, 2002), Biopython (Cock et al, 2002), Biopython (Cock et al, 
2009), BioJava (Holland et al, 2008)2009), BioJava (Holland et al, 2008)2009), BioJava (Holland et al, 2008)2009), BioJava (Holland et al, 2008)    

File File File File 
formatsformatsformatsformats    

Data storedData storedData storedData stored    Format specification or Format specification or Format specification or Format specification or 
descriptiondescriptiondescriptiondescription    

example software packages example software packages example software packages example software packages 
to write or manipulate datato write or manipulate datato write or manipulate datato write or manipulate data    

Fasta nucleotide or amino 
acid sequence data,  

http://genetics.bwh.harva
rd.edu/pph/FASTA.html 

many 

Fastq nucleotide sequence 
data with matching 
base quality scores. 

Two different 
encodings for base 

qualities exist1. 

Cock et al. 20101 many 

sam/bam/
cram 

text, binary and 
compressed binary 
files to store map 
positions of reads 

against a reference 
genome 

Li et al. 20092 SAMtools2 
NGSUtils3 

Picard 
(http://broadinstitute.gith

ub.io/picard) 

vcf/bcf text, binary files to 
store variant calls 

and genotypes 

Danecek et al. 20114 
http://www.1000genom
es.org/wiki/analysis/var

iant-call-format/vcf-
variant-call-format-

version-42 

Genome Analysis Toolkit 
VCFtools4, NGSUtils3 

gtf, gff general feature 
format: annotation 
of sequence data, 

such as gene 
models, 

http://www.sequenceonto
logy.org/gff3.shtml 

GenomeTools5 
BEDtools6 

Bed genome intervals – 
simple format for 

storing information 
about particular 

regions of a 
sequence 

http://genome.ucsc.edu/F
AQ/FAQformat.html 

BEDtools6 

NGSUtils3 
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End Table 15.1End Table 15.1End Table 15.1End Table 15.1    

15.3.215.3.215.3.215.3.2    Genome AssemblyGenome AssemblyGenome AssemblyGenome Assembly    

The second broad approach is to construct an assembly of each genome, and then find 

regions that are homologous to each other within each assembly that can then be used 

for phylogenetic or other comparative analyses. This is more informative when the 

different species/sequences being compared are more divergent, making aligning 

individual reads difficult. The basic principle of genome assembly is simple – by finding 

sequencing reads that overlap with one another, individual reads can be built up into 

longer and longer stretches of sequence data, representing pieces of the original 

genome, called contigs. The devil is in the detail, however – contigs can fail to be 

extended due to either repetitive sequences within the genome (so that there is 

ambiguity about how reads overlap with one another) or because of a failure to 

sequence a particular part of the genome. 

Different assembly algorithms take different approaches to solving the complex 

patterns that can occur near repeat units, but also take different approaches to 

identifying overlaps – with modern data, it is no longer possible to simply compare 

every sequencing read pair-by-pair, and align them to identify optimal overlaps, as the 

amount of data is so great that this would take an impractical amount of time and 

computer memory. To improve efficiency, reads are broken down in to words of k bases 

(k-mers). Overlap-layout-consensus assemblers use the computed k-mers to find 

preliminary regions of overlap between entire reads (e.g. Mullikin and Ning 2003) 

before aligning reads that overlap and then finding a single layout of these reads that 
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represent genome contigs (Miller et al. 2010). Assemblers for capillary sequence data 

all used this approach, but this has become impossible as the sizes of sequence data sets 

has increased. De Bruijn graph assemblers use the k-mers directly, rather than the reads 

themselves, and construct graphs representing overlaps between these k-mers before 

finding contigs as paths through this graph (Compeau et al. 2011). Popular De Bruijn 

graph assemblers for short read data are Velvet, Abyss and SOAPdenovo (Zerbino and 

Birney 2008; Simpson et al. 2009; Li et al. 2010). Overlap-layout consensus approaches 

are likely to see something of a resurgence as improving technology leads to increasing 

sequence read-lengths, meaning that fewer reads are needed for each genome region, 

and the benefit of keeping all of the read information increases. In particular, efficient 

data structures allows these approaches be used for much larger data sets (Simpson 

and Durbin 2012; Simpson and Durbin 2010). 

The completeness and contiguity of the assemblies produced by these software 

packages can often be improved by using specific tools to use read-pair information to 

join contigs together (scaffolding) external to the assembly software itself (see Hunt et 

al. 2014 for a review and empirical comparison), and a number of other tools designed 

to improve on the output of assembly software are also available (e.g. Swain et al. 2012; 

Boetzer and Pirovano 2012). Finally, some guidance as to how to make an appropriate 

choice from the ever-growing range of assembly tools available for particular data types 

is now available from controlled experiments in which a number of different techniques 

have been applied to the same datasets (Bradnam et al. 2013). 

A range of technologies and techniques exist for producing improved high-

quality genome assemblies (Chain et al. 2009) such as optical mapping (e.g. Latreille et 
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al. 2007) and new, emerging sequencing technologies that generate much longer reads 

that may span repetitive regions and so assemble more easily (e.g. Koren et al. 2013). 

These new technologies currently come at far greater cost per base-pair than short-read 

sequencing, and have higher error rates, but do hold great promise. Generating truly 

complete reference genomes is still far from a trivial or cheap exercise, but is at least 

now becoming achievable for non-specialist groups working outside genome centres. Of 

course, just as reduced-representation approaches can produce useful data when 

mapped against a reference genome, even fragmentary and incomplete genome 

assemblies can be excellent sources of information about evolutionary history, although 

for some analyses the inability to orientate and position loci with respect to one another 

may be problematic – for example if genetically unlinked loci are required, and even 

small errors in assembly can dramatically change interpretation of some genomic 

features (e.g. Parkhill 2002). 

15.3.315.3.315.3.315.3.3    Emerging alternatives between de novo assembly Emerging alternatives between de novo assembly Emerging alternatives between de novo assembly Emerging alternatives between de novo assembly 
and mappingand mappingand mappingand mapping    

Whereas mapping and variant calling describe two principal approaches to initial 

analysis of sequence data, two other approaches are worth considering and are in some 

ways intermediate between these two approaches. Reference-guided assembly (e.g. 

Schneeberger et al. 2011; Schneeberger et al. 2011) allows reads to be assembled more-

or-less independently, but using some information from some related genome sequence 

to help guide the assembly process. A related approach might be to generate sequence 

contigs using a de novo assembly process, and then order and orientate these contigs 
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using some related genome sequence (Assefa et al. 2009). A final approach is to use 

algorithms used in assembly to produce a multi-species or multi-individual assembly 

graph that allows the identification of more complex variants between the samples than 

is possible using standard read mapping approaches (Iqbal et al. 2012), and that can 

call variants between samples even without the availability of a reference genome 

sequence. 

15.415.415.415.4    The phylogenomic paradigmThe phylogenomic paradigmThe phylogenomic paradigmThe phylogenomic paradigm    

Whether by assembly and subsequent alignment, or by directly calling variants from 

reads, the end result of the above steps will be a set of sequence data for different 

individuals that represent distinct species or populations of some evolutionary interest. 

For most systematists, reconstructing organism phylogeny is likely to be one of the 

primary interests in using genomic data. Phylogenetic inference from many loci, or at 

the whole genome-scale is now sufficiently commonplace that we can characterize 

(possibly stereotype) a ‘standard’ phylogenomic analysis. While the description below 

is to some extent a stereotype of the phylogenomic endeavor, the steps described above, 

with fairly limited variation, have become routine enough to be automated in pipelines 

for producing phylogenomic trees directly from input sequences, and a number of 

packages are available that automate some or all of the required steps (e.g. Jones et al. 

2011; Wu and Eisen 2008; Dunn et al. 2013; Grant and Katz 2014). The profusion of 

these pipelines poses a particular challenge in validating each step of analysis (this 

volume, Chapter 1), and many of the considerations for these steps are also relevant for 

other evolutionary inferences, too. 
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15.4.15.4.15.4.15.4.1111    Identifying OrthologsIdentifying OrthologsIdentifying OrthologsIdentifying Orthologs    

Orthologs are gene copies descended from a speciation event, rather than from a gene 

duplication, so two orthologs are in an important sense the ‘same’ gene in two different 

genomes. For our purposes, the most important implication is that the evolutionary 

relationship of the two gene copies will most closely reflect the evolutionary history of 

the species themselves. An important first step in any phylogenomic analysis is thus to 

identify orthologous genes across the set of species included, and in particular orthologs 

that are present as single gene copies in all the species, so that there is little or no 

ambiguity about the relationships between the different copies. A traditional, standard 

approach has been to find ‘bidirectional best-hits’ between genes or proteins from 

different genomes under some similarity measure. This approach is unsatisfactory 

(Dalquen and Dessimoz 2013) and a number of more sophisticated approaches have 

been proposed: the OrthoMCL (Li et al. 2003) algorithm has been a standard approach 

for some years, but more recent approaches such as OMA (Roth et al. 2009), while less-

used, may be more powerful in untangling the relationships between gene copies in 

complex families (see e.g. Altenhoff and Dessimoz 2012 for a recent review of 

algorithms). Phylogenetic approaches may be more powerful, for example in identifying 

many more single-copy orthologs than distance-based approaches (Vilella et al. 2008; 

Creevey et al. 2011), but are significantly more computationally expensive. Note, 

however, that patterns of gene duplication and loss themselves may contain 

phylogenetic signal, and some approaches will be discussed later that can deal 

successfully with multi-copy gene families without dividing them into single-copy 

subtrees. 
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15.4.215.4.215.4.215.4.2    Multiple Sequence AlignmentMultiple Sequence AlignmentMultiple Sequence AlignmentMultiple Sequence Alignment    

Orthology analysis identifies homology at the level of whole gene copies, but an 

additional step is necessary to deal with the smaller-scale insertions and deletions that 

occur during the course of molecular evolution within a locus. This is sequence 

alignment. There is evidence that alignment for many loci is difficult to get right, and 

that accuracy is critical to both phylogenetic reconstruction (Morrison and Ellis 1997; 

Ogden and Rosenberg 2006) and to other downstream molecular evolution analyses 

(e.g. Wong et al. 2008). Fast and accurate multiple sequence alignment approaches are 

now available, and an enormous body of research has contributed to these 

developments, with even a book-length collection of reviews available (Rosenberg 

2011). The recognition that phylogeny and multiple sequence alignment both depend 

upon each other dates back to the earliest days of computational phylogenetics (Sankoff 

et al. 1973) – most multiple sequence alignment algorithms use a guide tree to reduce 

the computationally intractable multiple sequence alignment problem to a set of 

pairwise alignments. A more recent advance has been the development of practical 

algorithms that jointly estimate phylogeny and alignment (Liu, Raghavan, et al. 2009; 

Wheeler and Gladstein 1994). Of particular interest are algorithms that treat both 

alignment and phylogeny in a statistical framework, so that probability models of both 

single-site substitutions and insertion-deletion processes can be used, which should 

both improve the accuracy of alignment and allow accurate inference of these molecular 

evolutionary processes (Löytynoja and Goldman 2005; Westesson et al. 2012). A 

number of reviews have compared different alignment algorithms, estimating their 

accuracy based on protein families for which extensive structural data is available to 
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provide gold-standard alignments that do not depend heavily on primary sequence 

similarity (Blackshields et al. 2006; Thompson et al. 2011).    

15.4.315.4.315.4.315.4.3    Cleaning and pruning dataCleaning and pruning dataCleaning and pruning dataCleaning and pruning data    

Most analyses of phylogenomic data have taken steps to filter the data to ensure quality. 

These steps vary a great deal, but one important step is to clean up automated sequence 

alignments and a number of tools exist to identify ‘conserved blocks’ – regions of the 

alignment in which most taxa are ungapped – in which alignment accuracy is higher and 

aligned characters are more likely to be homologous (Castresana 2000; Capella-

Gutierrez et al. 2009). While some authors have criticized these approaches as 

discarding too much data (Wu et al. 2012; Wu and Eisen 2008), this may be of 

secondary concern in genome-scale datasets. Alternative approaches have included 

hidden Markov model (HMM)-based (Wu et al. 2012) and other (Löytynoja and 

Milinkovitch 2001) approaches to identify reliable regions of alignments, and using a 

simple test of alignment quality (Landan and Graur 2007). 

Some studies have advocated also building single-locus gene trees, and using 

these as a way to identify unreliable loci that should be excluded from any concatenated 

dataset for final analysis, for example to exclude potential lateral gene transfer events in 

resolving prokaryote phylogeny (Ciccarelli et al. 2006). While loci that are misleading 

about phylogenetic relationships are precisely those we want to avoid this approach has 

not been widely adopted, presumably because it appears circular – identifying 

surprising locus-specific phylogenies is only possible if we have some idea of the correct 

tree – and because it is increasingly clear that we expect a significant degree of 
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incongruence between loci (Salichos and Rokas 2014). Other studies have suggested 

removing quickly evolving species, or species that are ‘unstable’ in the sense that gene 

trees do not agree on their phylogenetic placement (see Wilkinson 2006 for reference 

to some methods to indentify such species), where species for which many loci are 

missing (Lemmon et al. 2009) but see (Roure et al. 2012), or by removing genes that 

are evolving exceptionally quickly (Rodríguez-Ezpeleta et al. 2007; Pisani 2004), There 

is some empirical data suggesting that keeping only phylogenetically ‘decisive’ genes in 

the sense that they have high gene-specific bootstrap support or by some other measure 

may give better results in studies aiming to resolve difficult, ancient divergences 

(Salichos and Rokas 2014). 

15.4.415.4.415.4.415.4.4    PhyloPhyloPhyloPhylogenetic analysis of concatenated datagenetic analysis of concatenated datagenetic analysis of concatenated datagenetic analysis of concatenated data    

The final stage of a standard phylogenomic analysis is to concatenate the alignments for 

each locus remaining after the cleaning step, to produce a single ‘supermatrix’ of the 

aligned genome data. As with any molecular phylogenetics, there is a bewildering array 

of choices of model and algorithmic approach to inferring the correct phylogeny for 

these data. Whereas distance-based methods are extremely fast and scale to large 

datasets well (Gascuel and Steel 2006), and very fast algorithms for maximum-

parsimony inference are available (e.g. Goloboff et al. 2008), the most popular and most 

accurate approaches are probabilistic inference using either maximum-likelihood or 

Bayesian approaches. Applying these methods to large datasets has now become 

computationally feasible thanks to computational developments in both serial 

(Stamatakis 2014; Guindon and Gascuel 2003) and parallel algorithms for calculating 
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likelihoods for sequence data on phylogenies (Flouri et al. 2015; Suchard and Rambaut 

2009). One problem for analyzing very large data matrices is that bootstrapping – the 

standard method for assessing the robustness of inferred phylogenies – is 

computationally demanding. However, both fast approaches to approximate 

bootstrapping (Stamatakis et al. 2008) and some alternative approaches (e.g. 

Anisimova and Gascuel 2006) exist, and bootstrap analysis is by its very nature easily 

performed in parallel where computing resources are available. 

15.515.515.515.5    Phylogenomics: the end (and beginning) of Phylogenomics: the end (and beginning) of Phylogenomics: the end (and beginning) of Phylogenomics: the end (and beginning) of 
incongruence?incongruence?incongruence?incongruence?    

We might expect that genomic data where sufficiently powerful and informative that 

the ‘right answer’ would emerge from relatively simple analysis of these data without 

the need for much methodological consideration. This promise initially appeared to be 

met. The first genuinely genomic phylogenomic studies had to wait for the availability of 

genome-wide sequence data for several closely related organisms. Perhaps the first 

such study was in yeast closely related to the laboratory model Saccharomyces 

cerevisiae (Rokas et al. 2003) and appeared to demonstrate the enormous potential of 

such data to resolve difficult phylogenetic issues, as molecular data for 106 conserved 

orthologs from 8 yeast species produced a fully-resolved phylogeny with perfect (100% 

for every node) bootstrap support. Optimism was rather short-lived; it soon became 

clear that even for this small-scale problem, genomic data would not be ‘ending 

incongruence’ as an accompanying editorial suggested (Gee 2003). Re-analyses of the 

same alignments with other phylogenetic methods produced different phylogenies 
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(Phillips 2004), also often with 100% bootstrap support. This was a timely reminder 

that bootstrap support values are model- or method-dependent, but also highlighting 

that, with large amounts of data, small biases in the methods used can drive you to be 

very confident about incorrect results. Indeed, this early, truly genome-wide 

‘phylogenomic’ dataset has become something of a platform for investigating these 

kinds of issues (e.g. Holland 2004; Phillips 2004; Taylor 2004; Fedrigo et al. 2005; 

Jeffroy et al. 2006; Hess and Goldman 2011; Gatesy and Baker 2005 and many others). 

This challenge has persisted in other taxonomic groups. Perhaps paradoxically, 

the availability of very large genomic datasets has not brought an end to concerns about 

incongruence, but rather has brought this, and a number of other methodological issues 

in phylogenetics into much sharper relief. Even within animal phylogenetics, despite (or 

perhaps, because of) centuries of systematic effort, controversy over important 

relationships has long persisted despite the availability of large molecular phylogenetic 

datasets. One clear, if now largely resolved, example of this is the debate over the 

correct relationships between major animal lineages, which focused on whether such 

morphologically different groups as annelids and nematodes formed part of a clade 

known as Ecdysozoa (named after the shared presence of a moulted cuticle; Aguinaldo 

et al. 1997) rather than the apparently more intuitive historical grouping – dating back 

at least to Cuvier in 1817 – of segmented animals such as annelid worms and 

arthropods in an Articulata clade (Scholtz 2002) within a wider group of coelomate 

animals, to the exclusion of the acoelomate nematodes (Rhaesa et al. 1998). In this case, 

careful analyses of single or few-locus data sets supported Ecdysozoan monophyly (e.g. 

Aguinaldo et al. 1997; Mallatt et al. 2004), while genome-wide datasets almost 
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universally decisively rejected this relationship (e.g. Philip et al. 2005; Blair et al. 2002). 

After much work, it seems that genome-scale analysis of the Ecdysozoa vs. Coelomata 

seems to get ‘fooled’ by the high rate of evolution in the nematode Caenorhabditis 

elegans – at the time the only nematode genome available (e.g. Philippe, Lartillot, et al. 

2005). It took careful and sophisticated phylogenetic analyses to understand this issue 

ten years ago (see Telford et al. 2008 for an excellent discussion of this literature; 

Telford et al. 2008), but increasing taxonomic sampling of genome-scale data seems 

decisive in supporting an Ecdysozoa clade (e.g. Dunn et al. 2008). Similar factors may be 

at play in continuing uncertainty about other animal relationships, such as the most 

basal relationships among animal groups (e.g. Nosenko et al. 2013; Whelan et al. 2015). 

Another salutatory example is a large-scale ‘genomic’ phylogenetic ‘tree of life’ 

(Ciccarelli et al. 2006) – including bacteria, archaea and eukaryotes – which was 

actually based on only a small fraction (around 1%) of loci from most genomes included 

(Dagan and Martin 2006), as problems of orthology or lateral gene transfer, detected as 

unusual locus-specific gene trees, led the authors to remove the vast majority of loci. 

Even these few loci appear to disagree significantly in phylogenetic signal (Bapteste et 

al. 2007). It seems that both careful identification of the subset of genes that represent 

the ‘core’ central inheritance of eukaryotes rather than later acquisitions from e.g. 

endosymbiotic lateral gene transfer from the mitochondrial ancestor or other, later LGT 

events (Pisani et al. 2007) and careful phylogenetic modeling of the resulting genes is 

needed to correctly identify the relationships between eukaryotes and archaeal lineages 

(e.g. Cox et al. 2008; Williams et al. 2012; see Williams et al. 2014 for a recent review), a 
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view confirmed by the discovery of a planktonic archaeal group related to the 

eukaryotic ancestor (Spang et al. 2015). 

These results have brought an increasing focus on the particular challenges of 

phylogenetic inference from large-scale datasets (Philippe, DELSUC, et al. 2005; Rannala 

and Yang 2008; Kumar et al. 2012; Lemmon and Lemmon 2013). 

15.5.115.5.115.5.115.5.1    Correct modeling of the substitution process can be Correct modeling of the substitution process can be Correct modeling of the substitution process can be Correct modeling of the substitution process can be 
criticalcriticalcriticalcritical    

Standard time- and sequence-homogenous models such as the Jukes-Cantor and 

General Time-Reversible (GTR) models used in standard molecular phylogenetics all 

attempt to capture similar kinds of variation: variation in the frequency of different 

bases, and variation in substitution rates between pairs of bases. The most common 

extensions to these models attempt to model variation in the rate of evolution across 

alignment sites – either including a subset of ‘invariant’ sites that are a priori assumed 

not to change across the tree (this is different to sites that are not ‘invariant’ a priori but 

just happen not to show any observed change in the sample included), or by assuming 

some distribution (typically a discretized gamma distribution) of evolutionary rates 

across sites (Yang 1996b).    

One important issue is for models to capture more subtle variation in the process 

of evolution across such very large alignments. Since the appearance of software able to 

fit different substitution models to different subsets of data (Yang 1996a; Nylander et al. 

2004), a common approach has become to ‘partition’ the alignment, so that different 

sets of alignment positions can have different substitution models, or at least different 
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inferred parameters of a model (figure 2). Most commonly, partitions are identified a 

priori, for example to choose a different partition for each locus (e.g. Nylander et al. 

2004), or analyse first, second and third codon positions as separate partitions for 

protein-coding data (Shapiro 2005), and partitioning data can substantially improve 

how well substitution models fit the data (e.g. Hess and Goldman 2011). Other 

approaches are possible: standard statistical model choice criteria have been used to 

choose between candidate partitioning strategies (e.g. Brown and Lemmon 2007; and 

see Blair and Murphy 2010 for a far more extensive discussion than we have space for), 

and one algorithm attempts to identify a statistically optimal partitioning of the data 

from the (very large) possible number of schemes (Lanfear et al. 2012). 

Fig 15.2    Two problems in phylogenomic inference. (a) 
The most basic approach is to concatenate data from 
multiple loci, and analyse the combined ‘supermatrix’ 
alignment using a single model of sequence evolution. 
More complex analyses might allow the rate of evolution 
to (b), and parameters of the substitution model (c) to 
vary between loci. More realistic, but more complex 
approach might be to allow rates of substitution (d) and 
even substitution model to vary between branches for 
each gene. The most general approach would also allow 
each gene to have a different topology (e) or even 
sample loci from overlapping but different sets of taxa. In 
these cases, a model of incongruence between gene tree 
topologies, or some non-parametric method is needed to 
infer a single species tree. Different Shades of grey 
indicate different loci and the model components 
(substitution matrices, trees and branch lengths) that 
apply to those loci, while model components in black 
apply across all partitions. (f) Different processes that 
introduce differences between the inferred phylogeny for 
a locus or gene family (in solid lines) and that for the 
species or populations they are sampled from (shown in 
outline). 
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More complex models – just as the widely used CAT model (Lartillot and Philippe 

2004), for example, take a different approach – rather than assigning sites into different 

categories with different modes of evolution, these ‘mixture models’ assume that sites 

evolve under a combination of a small set of models, with parameters describing these 

models and the relative contribution of each of the set to the dynamics at that site. A 

related, but different approach is to separately fit a panel of possible models to the data, 

and then average across the various parameters inferred under these models in 

proportion to how well each model fits the data (Posada and Buckley 2004). Mixture 

models – generally fitted in a Bayesian MCMC framework to allow the many parameters 

to be reasonably efficiently estimated – often do an excellent job of fitting variation in 

amino acid composition between sites, and often do so with remarkably few different 

model components required, but the models discussed above do nothing to capture 

variation in substitution rates not driven by these compositional differences, and do not 

attempt to model variation in substitution processes through evolutionary time. 

This kind of variation, equivalent to variation in substitution parameters across 

branches of a phylogenetic tree rather than across the genome, is more difficult to 

capture. Early attempts sought to allow variation in DNA composition (Galtier and Gouy 

1998), but more sophisticated approaches allow every branch to evolve under a 

mixture model across branches (Pagel and Meade 2004), or across both sites and 

branches (Blanquart and Lartillot 2008) or allow data to infer how the process of 

evolution varies between a set of models (Foster 2004; Whelan 2008). A different 

approach is a so-called covarion model, in which sites can switch between invariant and 

variable states along a tree (Penny et al. 2014). The end-result of this hierarchy of 
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increasing model complexity is the so-called general markov model (Barry and Hartigan 

1987), in which every branch has a unique substitution process. This model is too 

parameter-rich for general use (adding each additional taxon to a phylogeny adds 24 

additional parameters), but efficient inference consistent with this model is possible for 

quartets of taxa (Holland et al. 2012). The fully general substitution model is the most 

extreme example of a general trade-off between bias and variance, as the information 

available in the data is used to infer parameters that, while they may be necessary to 

correctly capture the process of molecular evolution, may be incidental to the biological 

questions being addressed, and there are clear limitations to this approach (Steel 2005). 

Systematic error caused by a lack inadequate models of evolution has long been 

recognized as a problem in phylogenetic inference (Swofford et al. 1996; Erixon et al. 

2003) but is likely to be more so in phylogenomic data where sampling error is small 

(Rodríguez-Ezpeleta et al. 2007) (Kumar et al. 2012). 

15.5.215.5.215.5.215.5.2    Concatenating data can misleadConcatenating data can misleadConcatenating data can misleadConcatenating data can mislead    

The advances described above in careful alignment, orthology analysis and modeling of 

the substitution process help ensure correct inference of the phylogeny underlying a set 

of sequence data, so that for a single locus an accurate ‘gene tree’ can be obtained. In 

most cases, however, the aim is to infer a correct phylogeny relating a set of individuals 

represented by sequence data from many loci. Concatenating these loci into a large 

matrix and then inferring a single phylogenetic tree from these data is only a sensible 

thing to do if a single tree relating these genomes – often called the ‘species tree’, as the 

individuals are representing some taxonomic group – really exists. While the sampled 
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genomes must be related by some evolutionary process of descent with modification, 

two things can happen to make searching for a single tree from many loci in this way 

misleading. One is that the process of evolution may not be simply bifurcating 

divergence, either due to processes like large-scale lateral gene transfer, allopolyploidy 

or introgression between populations, as in the case of endosymbiotic gene transfer 

mentioned above. A second problem is that evolutionary processes within the genome – 

gene duplication, gene loss and the coalescent process by which the different alleles 

present in extant populations are sampled from an ancestral population – can lead to 

different loci having different underlying trees, and that the best way to infer the 

phylogeny of the populations themselves may not be to simply join together alignments 

(figure 2). 

An alternative to combining alignments is to infer phylogenies for each locus 

separately before combining these distinct phylogenies. Choosing between these 

alternatives was a long-standing argument within molecular systematics about how to 

analyse data from different sources: initially fought beneath banners of ‘total evidence’ 

and ‘consensus’ and somewhat more recently between co-called ‘supermatrix’ or 

‘supertree’ analyses (de Queiroz et al. 1995). These debates reflect a balance between 

concatenation to increase signal-to-noise, and so produce more precise and better 

supported results, and analyzing loci separately to avoid potential systematic errors 

from the assuming that a single tree underlies all of the loci analysed (Bapteste et al. 

2007). These classic dichotomies have been somewhat resolved and replaced by a more 

sophisticated view of this choice as researchers have begun attempting to understand 
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the    biological processes that introduce difference between loci, and methods that 

attempt to directly address incongruence between loci directly have emerged. 

Early methods were based on parsimony, arguing that the best estimate of a 

species tree is the one that minimized the number of gene duplications, gene losses or 

other evolutionary events that were required to explain a set of phyogenies for genes or 

gene families (Goodman et al. 1979; Page and Charleston 1997). More recently, 

statistical approaches have become more important, and a range of probabilistic models 

have been proposed to capture the relationship between gene tree and species trees 

(Szöllősi et al. 2015). Interestingly, this view of species tree inference as a hierarchy of 

inference, from basic sequence data at the base to species tree at the top, modeling gene 

and locus in-between (Szöllősi et al. 2015) is effectively realising a research program 

proposed as long ago as the 1970s, when sequence data from multiple species was 

available for just a handful of genes (Goodman et al. 1979). Seen in this context, classical 

methods for combining information from multiple trees such as consensus and 

supertree methods can be thought of as dealing with incongruence between gene or 

locus trees in a non-parametric way, avoiding the need to model complex processes 

such as coalescent lineage sorting, gene duplication and loss (Ané et al. 2007; Cotton 

and Wilkinson 2009 and figure 2). Such ‘non-parametric’ approaches might seem 

attractive, avoiding the need for complex methods and models to capture biological 

processes happening above the nucleotide level that introduce incongruence between 

phylogenies at different loci. The flip side is that these models allow us to exploit 

sequence data to learn something about these processes, for example genome evolution 

(e.g. Cotton and Page 2005). 
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In fact, the most influential and widely-used of the methods used to infer species 

trees from multi-locus datasets model the coalescent process of allelic ‘lineage sorting’ 

in which multiple alleles in a population persist through divergence events, leading to 

the phylogeny drawn for samples of these alleles from different populations not 

reflecting the history of the populations themselves (Maddison and Knowles 2006; 

Rosenberg and Nordborg 2002; Nichols 2001). Indeed, the recognition that the 

coalescent process can lead to strange anomalies in which most genes can have 

misleading topologies (Degnan and Rosenberg 2006) has lead to multispecies 

coalescent methods (e.g. Edwards et al. 2007; Kubatko et al. 2009; see Liu, Yu, et al. 

2009 for a review) now probably being the mainstream approach for reconstructing 

relationships between closely related species or between populations (see this volume, 

Chapter 1 for further discussion). Related models allow the identification of species by 

estimating where barriers to gene flow between population exist (e.g. Pons et al. 2006; 

Choi and Hey 2011; see Carstens et al. 2013 for a recent review). Of course, the 

population genetics parameters that govern the coalescent process – genetic (effective) 

population sizes, dates of divergence between populations and others – are often of 

interest in themselves. Coalescent methods have long been proposed to learn about 

these population genetic parameters and processes from samples of molecular data (e.g. 

Ewens 1972), and this has become particularly important and widespread as sequence 

data for many individuals from populations are becoming available. 
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15.615.615.615.6    PopulationPopulationPopulationPopulation----level inference from genomic datalevel inference from genomic datalevel inference from genomic datalevel inference from genomic data    

Including samples of multiple individuals from each population or species allows 

further insight into the population genetics of the organisms, and next generation 

sequencing has enabled powerful population genomics approaches to answering 

questions about adaptation (Pool et al. 2010), speciation (Sousa and Hey 2013), 

demography (Pool et al. 2010; Excoffier et al. 2013) and epidemiology (Kao et al. 2014). 

One approach to making use of genome-scale data is to arbitrarily ‘chunk’ the genome 

into contiguous pieces that are sufficiently widely spaced that recombination between 

them will be frequent and sufficiently short that recombination within them is rare. 

These pieces then approximate independent samples of the genealogical coalescent 

process. This approach is widely adopted (e.g. Gronau et al. 2011; Heled and Drummond 

2010), but is far from ideal – not only does it discard much of the data, but 

recombination rates are sufficiently high that it is probably not possible to choose 

contiguous blocks of sequence that contain enough mutations to be informative while 

avoiding any recombination. Other approaches attempt to deal with inferring 

population genetic parameters for a recombining sequence, but the computational 

complexity of dealing correctly with this is prohibitive. A number of approximate 

methods to make use of genome-scale data efficiently in this way have been proposed. 

One class of methods (approximate Bayesian computation) uses extensive simulations 

to find evolutionary scenarios that are expected to produce genome data in some sense 

similar to observed data values (Csilléry et al. 2010; Beaumont 2010 are two recent 

reviews). Another approach is to fit probabilistic models to the site frequency spectrum 

(the distribution of allele frequencies across sites) for each population (e.g. Gutenkunst 
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et al. 2009; Excoffier et al. 2013) – a summary statistic that captures much of the signal 

of selection and demographic change in a sample of sequence data. A final approach is 

to use a computationally convenient approximation to the coalescent process itself 

(McVean and Cardin 2005; Hobolth et al. 2007). These methodological developments 

have led to general and powerful approaches to using genome-wide data to 

understanding the genetic history of populations. 

In fact, insight into many of these areas can be obtained even with a traditional 

‘molecular systematics’ sample of a single individual per species or population. Some of 

the power that comes from sampling many individuals is present in a sample of many 

loci (e.g. genomic data) from single individuals, as recombination induces a more-or-

less independent evolutionary history for each locus as time progresses, each subject to, 

and informative about, the population genetic processes that govern their joint 

evolution. This insight has led to methods for inferring population genetic parameters 

such as splitting times and rates of gene flow or migration between populations and 

effective population sizes of ancestral populations from samples of a single genome 

from each population (e.g. Rannala and Yang 2003; Hobolth et al. 2007), and to infer 

how the size of a population has varied through time (Li and Durbin 2011) and the 

history of admixture into a population (Harris and Nielsen 2013) from a single diploid 

genome sampled from it. A particular complication with sampling a single genome, or 

small number of genomes, from a population for many organisms is that phasing – 

inferring the sequence of each haplotype from a set of genotypes (Browning and 

Browning 2011) – is difficult or impossible based on such small samples, so extending 
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these methods to use multiple samples requires integrating across the uncertainty in 

phase (e.g. Schiffels and Durbin 2014; Gronau et al. 2011). 

A particular power of genome-wide population data is that, to a certain extent, 

the background pattern of variation across the genome acts as a control for many 

processes that affect the entire genome – such as demographic forces like population 

bottlenecks, or the effect of life history – and genomic loci that are outliers in some 

sense from this background pattern are likely to be of interest in some way. A range of 

methods for inferring selection from genetic, and more recently genomic, data have 

been proposed (see Vitti et al. 2013; Nielsen et al. 2007; Scheinfeldt and Tishkoff 2013 

for recent reviews). These methods vary in what kind of signals of selection they look 

for – e.g. alteration in the structure of linkage disequilibrium across the genome, 

variation in the allele frequency spectrum from neutral expectations or between 

populations, variation in the rate of substitutions between lineages or between 

synonymous and non-synonymous sites. These different signals differ in whether they 

are most sensitive to recent selection within a population or older selection acting 

between two reproductively isolated groups and whether they are sensitive only to the 

results of a classical selective sweep or can pick up the more subtle signs of selection 

acting on multiple loci or on existing variation. These genome-wide approaches raise 

the prospect of taking a ‘reverse genetics’ approach to understanding ecological 

adaptation – rather than identifying organismal traits thought likely to be adaptive, and 

then going on to identify loci responsible and ultimately how natural selection has 

worked at the genetic level, genome-wide scans for selection can potentially produce a 

list of loci under strong selection, and the functional significance of these then be 
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followed-up in the field or lab. This may lead to an understanding of adaptation 

potentially less biased by our preconceptions of what could be the key traits governing 

a particular organisms fitness in its environment. 

15.715.715.715.7    ConclusionConclusionConclusionConclusion    

High-throughput ‘next generation’ sequencing data enables systematists to rapidly 

generate large multi-locus datasets with unprecented ease and at increasingly low cost. 

The cost of generating molecular phylogenetic data is lower than ever, but the difficultly 

of handling these data is greater than for traditional molecular data, and care is needed 

in analysis. Luckily, an extensive and growing ecosystem of software is now available 

for handling sequence data, and for interpreting genome-scale data in a phylogenetic 

context. It is tempting to think of ‘phylogenomics’ as super-sized traditional molecular 

phylogenetics, and this chapter describes what is currently a standard approach to 

analyzing phylogenomic data. However, massively multilocus datasets pose some 

unique challenges for phylogenetic inference – including some methodological 

challenges introduced by the simple scale of the data, but also more conceptual issues 

around how to best make use of multilocus data, and most excitingly, what we can learn 

from multilocus data that is not possible from individual loci. Particularly exciting is 

that the differences between loci can reflect evolutionary processes acting on both the 

genomic and population levels. 
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