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Abstract.— Most supertree methods proposed to date are essentially ad hoc, rather than designed with particular properties
in mind. Although the supertree problem remains difficult, one promising avenue is to develop from better understood
consensus methods to the more general supertree setting. Here, we generalize the widely used majority-rule consensus
method to the supertree setting. The majority-rule consensus tree is the strict consensus of the median trees under the
symmetric-difference metric, so we can generalize the consensus method by generalizing this metric to trees with differing
leaf sets. There are two different natural generalizations, based on pruning or grafting leaves to produce comparable trees,
and these two generalizations produce two different, but related, majority-rule supertree methods. [Consensus; phylogeny;

symmetric-difference metric; Tree of Life.]

Supertree methods (SMs) take as input a set of phylo-
genetic trees and return one or more trees (supertrees)
that provide a synthesis of the input trees. Supertrees are
thus phylogenetic trees inferred from other phylogenetic
trees, and alternative supertree methods differ in the
way this inference is made (e.g., Eulenstein et al., 2004;
Wilkinson et al., 2005a). The problem of providing a
synthesis of a set of input trees was first addressed by
Adams (1972) for the consensus problem, which is the
special case where the input trees have identical leaf
sets. Alternative approaches led to the subsequent de-
velopment of many different consensus methods (CMs)
designed for this special case (see Bryant, 2003, for a
review).

The supertree problem is a generalization of the
consensus problem and the first attempt to develop
supertree methods (Gordon, 1986) focused on general-
izing from the well-known strict CM (see also Semple
and Steel, 2000; Constantinescu and Sankoff, 1995).
To be precise, we will say that an SM is a general-
ization of a particular CM if both methods handle
consensus problems identically. For example, Goloboff
and Pol (2000) developed a semistrict SM that is a
generalization of the semistrict CM (Bremer, 1990)
and several other supertree methods are generaliza-
tions of less well-known CMs (see Wilkinson et al.,
2005a).

Of the various CMs, the majority-rule consensus has
proven particularly important because of its use in sum-
marizing bootstrap or jackknife replicates (Felsenstein,
1985), quartet puzzling steps (Strimmer and von Haes-
seler, 1996), and Bayesian posterior probability distribu-
tions on trees. The majority-rule also seems quite natural
when the input trees are inferred from independent data
as is often the case in supertree construction. However,
as yet no SM has yet been proposed as a generalization
of the majority-rule CM, and Goloboff and Pol (2002)
and Goloboff (2005) doubted that such a generalization
is possible. Here, we define two SMs that are alternative
generalizations of the majority-rule CM.

PRELIMINARIES

We are concerned with leaf-labeled trees, which are
acyclic graphs displaying exclusively branching phylo-
genetic relationships (see Semple and Steel, 2003, for a
more formal definition of a phylogenetic X-tree). Poly-
tomies in these trees are interpreted as soft, representing
uncertainty rather than the simultaneous divergence of
a set of taxa. Let L be a set of leaves (a leaf set) and L1 de-
note theleaf setof tree T (i.e., all and only theleaves of T).
We call a tuple of trees P= (t1,...,k) a profile and denote
their leaf sets L1,...,L,. The leaf set L pis the union of the
leaf sets of all trees in P. We write T'|;, for the restriction
of tree Tto leafset L—i.e., the subtree of T induced by
the leaves in L (see Semple and Steel, 2003:110-111). A
split is a bipartition of the leaf set, and a (nontrivial) split
has at least two taxa in each set (equivalent to a tree with
one internal branch). A tree displays a set of compati-
ble splits, and a set of splits is compatible if all the splits
could be displayed by a single tree (see Meacham 1983;
Semple and Steel, 2003; Wilkinson et al., 2007, for formal
definitions) A split is full with respect to a tree T if its
leaf set is precisely Lt and is partial with respect to any
more inclusive leaf set. A split is plenary with respect to
a tuple of trees P if its leaf set is precisely Lp. Note that
in the special case of consensus, where all trees have the
same leaf sets, there is no difference between full and ple-
nary splits. We will find it useful to further distinguish
majority splits as those that are displayed by a majority
of the input trees. Our examples are all of rooted trees
in which the root (though not always shown as such)
can be considered an additional leaf. In our application,
the initial order of trees within the tuple P does not
matter.

THE MAJORITY-RULE CONSENSUS AND BEYOND

The majority-rule CM was introduced by Margush and
McMorris (1981). It returns a unique tree that displays ex-
actly (all and only) the majority full splits of a set of input
trees. Thus the content of a majority-rule consensus tree
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FIGURE 1. Four input trees (a) and four trees (b—e), each of which
is entailed by a combination of three input trees. After (relabeled from)
Goloboff and Pol (2002).

can be determined simply by counting the frequency of
occurrence of the full splits displayed by the input trees.
Goloboff and Pol (2002:522) doubted that an equivalent
method is possible when input trees have nonidentical
leaf sets because “In many cases it is not possible to count
how many trees support (or contradict) a group.” They
illustrated their concerns with a simple example of four
input trees (Fig. 1a), any three of which are mutually
compatible and jointly entail a different fully resolved
tree (Fig. 1b—e) that is incompatible with the fourth in-
put tree. This “shows that a tree may be required to both
support a group, or to contradict it, depending on the
trees with which it is to be combined.” Given that sup-
port and conflict, thus construed, are not exclusive, they
concluded that “Therefore it is not possible to produce
a conceptual equivalent of the majority-rule consensus
tree when the trees have different sets of taxa. A method
can check on how many input trees a given partition
appears only as long as the taxa involved in the par-
tition ... are present in each and every one of the input
trees.” Note that it is not that we cannot count how many
times a supertree split is displayed by less inclusive in-
put trees (it is always zero) but that this count cannot
determine which relationships should be in a majority-
rule supertree. More importantly, as we shall show, the
counting problem is not an insurmountable difficulty in
defining a majority-rule SM.

Many CMs can be defined, as above, in terms of con-
ditions required for relationships to be included in the
consensus tree (Bryant, 2003), but alternative character-
izations are sometimes possible and useful. Bathélemy
and McMorris (1986) showed that the majority-rule
consensus tree minimizes the sum of the symmetric-
difference metric (the number of full splits present in
one but not both of two trees) between it and each of
the input trees. The majority-rule consensus tree is thus
shown to be a median of the input trees with respect
to the (full-split) symmetric-difference metric. When the
number of input trees is odd, the majority-rule consen-
sus tree is the unique median tree. If the number of input
trees is even, there may be multiple median trees, in-
cluding the majority-rule tree and resolutions of it that
include full splits occurring in exactly half the input trees.
Our key observation is that, in this case, the majority-
rule consensus is the strict consensus of the median
trees.

Although it may be simpler to construct majority-rule
consensus trees by counting splits, in principle they can
also be found by searching treespace using the sum of
the symmetric differences between any candidate con-
sensus tree and each of the input trees as an objective
function to distinguish median trees from suboptimal
trees and then constructing the strict consensus of the
median trees. In seeking an SM that corresponds to the
majority-rule CM, we can avoid conceptual difficulties
associated with counting splits by generalizing the CM
objective function. The full-split symmetric difference is
defined only for trees with identical leaf sets, and two dif-
ferent generalizations of the symmetric-difference metric
to the case of trees with differing leaf sets lead to two dif-
ferent majority-rule supertree methods.

MAJORITY-RULE(-) SUPERTREES

One means of generalizing to the case where one tree
is a supertree and the other an input tree is by comparing
the input tree to the subtree of the supertree induced by
the leaf set of the input tree (i.e., the supertree pruned of
any leaves not in the input tree). These two trees have the
same leaf set, so the symmetric difference is defined, and
we take this as the symmetric difference of the supertree
and input tree. Given as input a profile P = (1, ..., k),
the objective function minimized in the majority-rule(-)
supertree is

k

> d(TI, t)

i=1

where d is the standard symmetric-difference metric and
T ranges over all trees with leaf set Lp. This seems rea-
sonable when we consider that other relationships in the
supertree that pertain to leaves not in the input tree seem
irrelevant to the comparison. Note also that any input
tree full split displayed by a pruned supertree is a par-
tial split displayed and entailed by the supertree. A me-
dian supertree with respect to the symmetric-difference
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metric is a supertree that minimizes the sum of the sym-
metric differences between each input tree and the (ap-
propriately pruned) supertree (Bryant, 1997:204). We can
now define the majority-rule(-) supertree as the strict con-
sensus of the median supertrees. The minus signals that
the method depends on pruning leaves to determine the
symmetric difference.

Applied to Goloboff and Pol’s example (Fig. 1) we see
that each of the four trees entailed by some combination
of three input trees has a symmetric difference to the
fourth input tree (and to the input trees as a whole) of
two, which is the minimum. All are construed as median
supertrees given our generalization of a symmetric dif-
ference, and their strict consensus, which is completely
unresolved, is the majority-rule(-) supertree. This lack
of resolution is to be expected in this artificial exam-
ple in which there are no full or partial splits shared by
any two input trees—and other supertree methods, such
as matrix representation with parsimony (MRP; Baum,
1992; Ragan, 1992), give the same result. A second exam-
ple, a modification of the first, illustrates a case where
the majority-rule(-) supertree is completely resolved
(Fig. 2). The four input trees conflict over the relation-
ships of D and E. Tree 1 asserts that D is more closely
related to E than to either A or B, whereas trees 2 and
3 assert that D is closer to A and B, respectively, than it
is to E. The fourth does not include both D and E and
is compatible with all the others. There is a unique me-
dian tree in this case with a minimally pruned symmetric
difference of two (Fig. 2b, c). This is the majority-rule(-)

a) Input Trees
ABDE ACDE BCDE ABCD

V&

b) and c) majority-rule(-) supertree
A B CDE A B CDE

100 X1.5
100 3.5
66 \2

d) semi-strict supertree
A B CDE

FIGURE 2. Four input trees (a) modified from those in Figure 1
through the addition of a single leaf to each, and their majority-rule(-)
supertree showing alternatively (b) the mapping of supportive input
tree splits and (c) the number of supportive input trees as a percentage
of the input trees that by virtue of their leaf set could have supported
the supertree split, and a weighted sum of the support provided by the
input trees. (d) The semistrict supertree for these input trees.

supertree. Note that the relationships of D and E are re-
solved, as we might expect, in favor of the two input trees
that place D closer to A or B than to E.

Majority-rule consensus trees are usually decorated
with the frequencies of their full splits, which greatly
enhances their usefulness. There has been some debate
about how to measure support for supertree relation-
ships (Bininda-Emonds, 2003; Wilkinson et al., 2005b;
Cotton et al., 2006). Here we use the measures of su-
pertree support defined by Wilkinson et al. (2005b), who
argued that a plenary split in a supertree is supported by
any input tree full split that it entails. We can thus map
the input tree splits to the supertree splits they support
and for any supertree split we can count s, the number
of input trees supporting any supertree split (Fig. 2b).
Note that some input tree splits can map to, and support,
more than one split in the majority-rule supertree. In
the example, tree 1 lacks C, and AB is taken as support-
ing both AB and ABC in the majority-rule supertree.
Wilkinson et al. (2005b) suggest down-weighting such
support by the number of supertree splits it is shared
among, leading to a weighted sum of the total support
(ws) for any supertree split.

In contrast to the consensus case, we expect that in
many real supertree analyses some input trees will have
leaf sets that make them irrelevant to the support for
a supertree split. Thus we suggest expressing s as a
percentage of the number of input trees that, by virtue
of their leaf sets, could support the supertree split and
reporting some measure of absolute support such as
ws in addition. Applied to our example, the decorated
majority-rule tree (Fig. 2c) shows that AB and ABC have
100% support, but that more input tree splits support
ABC (3.5) than AB (1.5). In contrast, ABCD has 66%
support, reflecting the two trees that support it and the
one tree that contradicts (the other being irrelevant).
That the results seem reasonable and intuitive in this
case is underlined by the semistrict supertree (Fig. 2d),
which includes only the two groups with 100% support
and excludes the group ABCD. Note that these measures
can be used to decorate any supertree.

MAJORITY-RULE(+) SUPERTREES

The majority-rule(-) SM defined above relies on prun-
ing leaves from the supertree to construct an analogue of
the symmetric-difference metric applicable to trees with
different, but overlapping, leaf sets. An alternative gen-
eralization stems from the reverse operation of grafting
missing leaves onto each of the input trees in a set P so
as to convert them all into plenary trees (trees with leaf
set Lp). We define the binary supertree span <t> of an
input tree t to be the set of binary (fully resolved) trees
on L p that display ¢. In other words, <t> includes all the
supertrees that can be produced by grafting any missing
leaves (those in P but not in t) onto ¢ and resolving any
polytomiesint. Thus, forak-tupleoftrees P = (t4, ..., )
we have a k-tuple of their binary supertree spans Z =
(<ti>, ..., <t>) and we use this to define a represen-
tative (because it displays all the input trees) selection,
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=(Ti, ..., Ty), where T; € <t;>fori =1,... ,k asany k-
tuple comprising precisely one supertree selected from
every span in Z. Because all the members of any R
display plenary splits we can use the majority-rule
consensus method to summarize any R, producing a
well-defined and unique candidate supertree Ty for each.
We are interested in the best representative selections,
as judged by the median objective function. Thus we
can rank the majority-rule consensus trees (the Trs) for
the different Rs by their median scores, calling those
for which this is minimized the optimal candidate su-
pertrees.

More precisely, given a representative selection R =
(Th, ..., Ty) for P, let s(R) denote the median score of R,
defined by

k
s(R) = minr Zd(T, T;)

i=1

where T ranges over all trees with leaf set L p. An optimal
candidate supertree is the candidate supertree T of any
representative selection R = (T, ..., Ty) for P that has
the smallest possible median score s(R). We can now de-
fine the majority-rule(4) supertree as the strict consensus
of all the optimal candidate supertrees. The plus sign in
the name signals that the method depends on grafting
leaves to convert the supertree problem into a consensus
problem and distinguishes it from the former method
based on pruning.

Figure 3 illustrates the method applied to Goloboff
and Pol’s example (Fig. 1). We consider four likely
candidate trees, each of which displays three of the four
input trees (and is thus in each of their supertree spans)
and is incompatible with the fourth. In this case, each
is the majority-rule consensus tree of a representative
selection from the supertree spans of the input trees
that comprises the candidate tree, selected (three times)
from the spans of the three input trees it displays, and a
tree chosen from the span of the incompatible input tree
such as to minimize the symmetric difference between
it and the candidate tree. The minimal frequency of
the full splits in the majority-rule consensus trees is
therefore 75% and any differences between them result
from differences in how badly the incompatible input
tree conflicts with the consensus.

With two of the four candidate trees (Fig. 3b and c), it
is possible to graft the missing leaves onto the incompat-
ible input tree so as to produce two of the three full splits
in the candidate tree. For one candidate tree (Fig. 3e),
only a single common full split can be created by graft-
ing, whereas no common splits can be produced by any
grafting for the fourth (Fig. 3d). Thus the first two are the
optimal candidate supertrees and the majority-rule(+)
supertree is the strict consensus of these, decorated with
the lowest of the frequencies of the included splits.

In this case, the majority-rule(+) tree differs substan-
tially from the majority-rule(-) (and other supertrees),
which is unresolved. The additional resolution results
from considering relationships that are possible (through
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FIGURE 3. Constructing the majority-rule(+) supertree (a) for the
four input trees in Figure la. Each pair of trees (b—e) corresponds to
a representative sample from the spans of the input trees, comprising
three copies of the tree entailed by a combination of three input trees
(which s also the majority-rule consensus of the selection), and one tree
that displays the conflicting input tree (thickened branches) and has the
missing leaves grafted on so as to minimize its symmetric difference
to the other tree. Numbers indicate the frequency of occurrence of the
full splits in the representative selection. Two of the majority-rule con-
sensus trees (b and c) are optimal candidates and the majority-rule(+)
supertree is their strict consensus.
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alternative graftings) in addition to relationships present
in each input tree. In this case, the additional resolution
reflects the facts that (1) there is some grafting, and
so some representative selection, under which all the
input trees display the two groups in the supertree; and
(2) there is no alternative grafting, under which all the
input trees display different groups, and so does not
seem unreasonable. Applied to the second example,
both methods return the same supertree but they differ
slightly in their decoration (Fig. 2c). The frequency of
ABCD s 75%, indicating that three of the four input trees
are compatible with this full split. The corresponding
decoration on the majority-rule(-) supertree (66%)
indicates that two input trees support this full split and
that only one other tree could have supported the split
(by virtue of its leaf set) but that it does not. The effect
of grafting rather than pruning is to allow the otherwise
irrelevant input tree to support this split.

PROPERTIES OF MAJORITY-RULE SUPERTREES

Based on their definitions, we conjecture that the
majority-rule supertrees have the following properties.
In the consensus setting, these properties follow from the
definition of the majority-rule consensus as the tree con-
taining all and only the majority plenary splits. As we
have generalized from the median property of majority-
rule consensus, these properties await formal proof (or
disproof) for our more general methods:

1. All majority plenary splits are in the majority-rule tree.
This property is familiar in the consensus case where
all input trees display only plenary splits. More gen-
erally, input trees may display no plenary splits (as in
our examples), in which case the property is uninter-
esting, but whenever such majority plenary splits exist
they will be in the majority-rule supertree. Such cases
may arise in small-scale supertree studies of genomic
data (e.g., Creevey et al., 2004).

2. The majority-rule tree is compatible with any majority
partial splits. The majority-rule CM does not display
all majority partial splits (only those entailed by major-
ity full splits), but it is compatible with any majority
partial splits. In the supertree case there may be no
majority partial splits but if there are, the majority-
rule tree is expected to be compatible with them, as in
the consensus case.

3. Although a split in the majority-rule trees may not be
displayed by any input tree, all splits in the majority-
rule tree are compatible with a majority of the input
trees. Note that we cannot expect every split that is
compatible with a majority of input trees to be in the
majority-rule tree even in the consensus case, as the
set of such splits may be incompatible.

4. Every plenary split in the majority-rule tree entails at
least one input tree full split. Without support, in the
sense of Wilkinson et al. (2005b), from one or more
input trees, a split cannot occur in the majority-rule
tree. The converse does not hold, so not every plenary
split that entails at least one input tree full split will

be in the majority-rule tree. The set of such splits may
be incompatible.

Additionally, for the majority-rule(-) supertree, sup-
port (sensu Wilkinson et al., 2005b) must be greater than
conflict, so that every plenary split in the majority-rule
tree must entail splits in more input trees than it conflicts
with; i.e., in a majority of the relevant trees. It is not clear
whether this also holds for majority-rule(+) supertrees,
where otherwise irrelevant trees can be interpreted as
either supporting or conflicting a given supertree split,
depending on the other input trees.

The two methods differ in their treatment of poly-
tomies. The objective function of the minus method pe-
nalizes the supertree if it resolves a group permitted by
an input tree polytomy, whereas in the plus method this
carries no cost, which seems more reasonable in the su-
pertree setting (Page, 2002). This difference does not ex-
plain their very different behaviors with the Golobof and
Pol (2002) example (Figs. 1 and 3), which instead reflects
the different treatment of missing leaves.

In common with many other supertree methods
(Wilkinson et al., 2005a), we expect the majority-rule(-)
method to be quite sensitive to input tree size, given that
larger trees have more splits and a greater potential con-
tribution to the sum of the full-split symmetric differ-
ences. One way to reduce this effect might be to use a
normalized symmetric-difference score (Robinson and
Foulds, 1981) between the pruned supertree and input
trees but this would result in splits in different trees hav-
ing different weights. Both majority-rule methods can be
readily extended to employ differential weights of trees
and of their splits by defining a weighted sum of the
symmetric differences. Using normalized scores or other
differential weighting, properties 1, 2, and 3 would not
generally hold. The representation of input trees by su-
pertrees ensures that in the majority-rule(4) method, all
input trees potentially have equal weight. However, the
best representative selections will be ones in which miss-
ing leaves are grafted to input trees so as to best represent
their relationships as evidenced by the other input trees,
and we would expect larger input trees to have a greater
impact on this. In the consensus case, the majority-rule is
also a median tree, but this does not hold more generally.

AN EMPIRICAL EXAMPLE

As an empirical example, we have constructed the
majority-rule supertrees for five molecular phylogenies
of Drosophila, extracted from larger studies of Drosophila
phylogeny. More complete versions of these trees
were analyzed with a range of supertree methods in
Cotton and Page (2005). The input trees are shown in
Figure 4. The majority-rule(4+) and majority-rule(-) trees
for this example are identical. They include only the
clade containing D. melanogaster, D. sechellia, and D.
simulans and its resolution and have the same support
values (Figure 5). The majority-rule(-) supertree is the
strict consensus of 79 median trees, whereas there are
43 median trees under the majority-rule(4) objective
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FIGURE 4. Input trees for the Drosophila example. Each tree is ex-
tracted from a wider study of Drosophila phylogeny from the following
genes and sources. (a) Roughex (Avedisov et al., 2001). (b and ¢) Alco-
hol dehydrogenase and alcohol dehydrogenase-related, respectively (Bertran
and Ashburner, 2000). (d) Dopa decarboxylase (Tatarenkov et al., 1999).
(e) Cu-Zn superoxide dismutase (Kwiatowski et al., 1994).

majority-rule(-) and majority-rule(+)
D. erecta
D. hydei
D. virilis
D. yakuba
D. lebanonensis
D
D
D

. melanogaster
100
100, D. sechellia
00
100N D, simulans

Outgroup

FIGURE 5. Majority-rule supertrees for Drosophila species. The
majority-rule(-) and majority-rule(+)supertrees are both identical and
show identical decoration (above and below nodes, respectively) for
this data set.

function, all of which are also median trees under the
majority-rule(-) criterion. The strict consensus of the
77 standard MRP supertrees is also identical to this
tree, whereas the strict consensus of 10,200 Purvis MRP
supertrees is unresolved. In this case, the majority-rule
methods perform as well as standard MRP, and the
general lack of resolution in the supertrees results both
from incongruence and from a lack of effective overlap
in the input trees (see Wilkinson and Cotton, 2006).

FINDING M AJORITY-RULE SUPERTREES

Although not our prime concern, some comments on
the implementation of the majority-rule SMs is war-
ranted. Majority-rule(-) supertrees can be approximated
with heuristic searches of tree space as are used for many
other supertree methods and taking the strict consen-
sus of all equally optimal candidate supertrees. Clann
(Creevey and Mclnerney, 2004) implements a number
of methods that use objective functions based on com-
parisons of input treees with pruned supertrees. Bryant
(1997) has shown that finding a single median tree under
the pruned symmetric-difference metric is NP-complete,
and this implies that finding our majority-rule(-) su-
pertree is also.

There can be many representative selections of a set
of input trees, too many for majority-rule(+) supertrees
to be found through their exhaustive enumeration. The
objective function is minimized when there is a lot of
agreement in a representative selection; i.e., when the
addition of leaves is maximally consistent with informa-
tion on their relationships in the other input trees. Thus
we might be able to use this information to efficiently
construct optimal or near optimal representative selec-
tions. Doubtless other, better methods that do this await
invention, but we could, for example, use a greedy poly-
nomial time method such as quartet joining (Wilkinson
and Cotton, 2006) to construct representative selections
from the input trees and repeat this with as many dif-
ferent starting trees and orders of adding missing leaves
as we desire in the search for the optimal candidates. In
the worst case, there are exponentially many representa-
tive selections, so finding the majority-rule(+) supertree
is likely to have at least exponential complexity.

DISCUSSION

The majority-rule CM of Margush and McMorris
(1981) is the most widely used CM in systematics and
a reasonable choice when input trees are independent.
Thus, in searching for a useful supertree method it is
natural to look for generalizations of the majority-rule
CM. Goloboff and Pol (2002) suggested that a meaning-
ful generalization is not possible, but we have defined
two nontrivial generalizations that overcome the diffi-
culties they identified. As Goloboff and Pol (2002) and
Goloboff (2005) acknowledge, a majority-rule SM seems
ideal for a range of important applications. In particular,
Goloboff (2005) takes the widely used MRP method to be
an attempt at something like a majority-rule supertree,
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and he highlights that it does not behave how we might
expect from a majority-rule supertree method. That the
definition of majority-rule SMs is not as problematic
as Goloboff and Pol (2002) supposed only strengthens
Goloboff’s (2005) critique of other supertree methods.
The majority-rule methods we have defined appear more
similar to (though not equivalent to) the split-fit or ma-
trix representation with compatibility (Rodrigo, 1996)
method than to parsimony-based methods.

Many CMs can be defined in a number of alternative,
equivalent ways: in terms of conditions for splits to be
included, in terms of algorithms used to construct them,
and, in some cases, in terms of the objective function a
consensus tree optimizes. Our treatment highlights that
alternative generalizations from consensus to supertree
methods based on these different views of consensus
may be possible and that some may be more fruitful
than others. In particular, we emphasize the potential
use of pruning or grafting leaves to achieve consensus
comparisons and offer some insight into how and why
they might differ. We note, in passing, that although
the objective functions defined here are well-defined for
comparing a supertree with an input tree (a tree on a
subset of the whole leafset), they are not well defined
metrics on the set of all trees and may not be useful gen-
eralizations of the symmetric-difference metric in other
settings.

Majority-rule supertrees are not expected to include
the unsupported groups for which MRP, MinFlip,
and other SMs have been criticized (e.g., Pisani and
Wilkinson, 2002) and because the two objective functions
are symmetric we do not expect the method to be bi-
ased with respect to input tree shape (Wilkinson et al.,
2005a). We therefore consider the majority-rule supertree
methods we have defined to be promising approaches to
supertree construction that merit further study of their
behavior with real examples and thorough simulation.
It might be anticipated that majority-rule supertrees will
sometimes be too conservative and poorly resolved and
that there will sometimes be partial splits that are well
supported in the absence of any well-supported plenary
splits. Thus, extending the approach to include com-
patible minority splits and to find such well-supported
partial splits (Wilkinson, 1996) would be useful areas of
further work. We would expect more liberal methods to
extend rather than conflict with majority-rule trees. It
might also be instructive to investigate supertree meth-
ods more widely in the better understood context of con-
sensus methods (Day and McMorris, 2003; Wilkinson
et al., 2007).
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