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A supertree is a phylogeny formed by combining in-
formation from disparate phylogenetic trees. Supertree
methods have been particularly used for constructing
large phylogenies from previously published trees and
there is a growing literature using supertree methods
for phylogenetic inference in macroevolutionary studies
(e.g., Davies et al., 2004; Grotkopp et al., 2004; Salamin
and Davies, 2004). This empirical supertree work has
mostly used matrix representation with parsimony (stan-
dard MRP; Baum, 1992; Ragan, 1992) in which opti-
mal supertrees are found by parsimony analysis of a
matrix encoding the full splits of the input trees. A
major concern with standard MRP (and some other)
supertrees is that they can display relationships that
seem to lack evidential support from the input trees, ei-
ther individually or jointly (Bininda-Emonds and Bryant,
1998; Pisani and Wilkinson, 2002; Wilkinson et al., 2004b).
This has prompted the development of measures of
support that attempt to distinguish supported and un-
supported relationships in supertrees (Bininda-Emonds,
2003; Wilkinson et al., 2005b).

A standard means of analyzing the distribution of sup-
port across a phylogenetic hypothesis is to deconstruct
a tree into the less complex relationships that the tree
entails. For example, bootstrap proportions are typically
reported for a set of full splits (clades on rooted trees)
on the taxa of interest, and a number of other measures
on trees are focused at identifying clade-based support
(e.g., Bremer, 1994; Larget and Simon, 1999). In the su-
petree context, clades must be supported by input trees
rather than by characters, and a supertree and the input
trees generally have different leaf sets, so that a supertree
clade may not be displayed by any input tree. This has
left scope for ambiguity as to how to identify and quan-
tify support in the supertree context (Bininda-Emonds,
2003; Wilkinson et al., 2005b). One solution is to seek
some kind of soft, or reduced, support, in which input
clades that are compatible with or entailed by supertree
clades are seen as providing some level of support for
these supertree relationships.

Previous work has two important limitations. It fo-
cuses only on support (or lack of support) for supertree

clades (components, full splits), ignoring support for less
inclusive relationships like partial splits, triplets, or nest-
ings (Wilkinson, 1994). We show that a more sensitive
measure of support, focusing on lower-level relation-
ships, may give a different picture of which supertree
relationships are supported and unsupported. In fact,
a supertree clade can appear unsupported despite all
the triplets it implies being supported. As noted by
Wilkinson et al. (2005b), “input trees may jointly en-
tail, and thus strictly support, novel relationships that
are not strictly supported by any single input tree.” The
second limitation of previous work is that it relies on
pairwise comparisons between each input tree and the
supertree and consequently does not fully account for
support jointly entailed by combinations of input trees.
As the primary use of supertree methods is to com-
bine information from a set of input trees, being able
to identify this kind of support seems particularly im-
portant. Some authors have claimed total-evidence-like
properties of signal enhancement for supertree methods
(Bininda-Emonds et al., 1999), but novel relationships
displayed by a supertree (relationships not present on
any of the input trees) are worrying if they are not im-
plied by combinations of the input trees (see Pisani and
Wilkinson, 2002).

Focusing exclusively on a rooted supertree and rooted
input trees, we present a method for examining the sup-
port for triplets in a rooted supertree that can be naturally
extended to identify combined support for supertree re-
lationships, based on inference rules for triplets. We show
that considering this combined support can reveal sup-
port for additional supertree relationships and so better
diagnose unsupported relationships.

TRIPLET SUPPORT

We define a triplet as a rooted binary tree with three
leaves, such as the input trees (AB)C, (CD)B, and (BC)D
shown in Figure 4. Following the notation of Bryant and
Steel (1995), if R is a set of triplets, then the span of R,
denoted 〈R〉, is the set of rooted trees on all the leaves
of R that display all the triplets in R. A tree is defined
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FIGURE 1. The supertree shown is the standard MRP supertree for
the three input trees. The supertree clade (A,B) receives no support un-
der either of the clade-based support measures that have been proposed
(Bininda-Emonds, 2003; Wilkinson et al., 2005b) but is fully supported
by the triplets in the three input trees.

as compatible with a triplet if the subtree induced by the
leaves of the triplet is either unresolved or identical to the
triplet, so that compatability is defined such that poly-
tomies represent ignorance rather than actual simultane-
ous divergence (are soft rather than hard in the sense of
Maddison, 1989). r (T) is the set of rooted triplets that are
induced subtrees of rooted tree T , i.e., the set of triplets
displayed by T .

The concept of support and conflict for triplets in a su-
pertree is a very simple one. If the supertree triplet is dis-
played by the input tree, then it supports this supertree
relationship. By focusing on the smallest unit of cladis-
tic information, the ambiguous support that clade-based
measures need to deal with is avoided, allowing a sim-
ple classification of supertree relationships at this level
equivalent to that suggested by Wilkinson et al. (2005b).
More formally, let {T1 . . . Tn} be an n-tuple of rooted in-
put trees, and let S be a rooted supertree. For a particular
input tree Ti , we can find the triplets supported by that
tree as r (S) ∩ r (Ti ), so that the set of triplets supported
by the input trees is:

r (S)supp =
⋃

i=1...n

(r (S) ∩ r (Ti ))

Any triplet in this set is matched by a triplet in at least
one input tree, and so receives at least some support,
whereas triplets outside this set are not present in the in-
put, and so are novel and potentially worrying. The size
of this set is a measure of the extent to which relation-
ships in a supertree are supported by at least one input
tree, while

|r (S)supp|
|r (S)| is the relative proportion of such sup-

ported relationships.
This triplet-based assessment of support can give us a

very different perspective to clade-based measures. The
(A,B) clade in the supertree shown in Figure 1 is unsup-
ported by any input tree clade, and is contradicted by
the third input tree. Previous clade-based measures re-
flect this lack of support. However, all the 10 triplets in
the supertree are present in the set r (S)supp, and so the
tree is fully supported in terms of triplets.

A CLOSURE OPERATION AND COMBINED SUPPORT

A set of triplets are compatible if they can all be dis-
played on a single tree, and any set of compatible triplets

implies one or more (perhaps nonbinary) trees. For ex-
ample, the triplets (AB)C and (AC)D together imply the
tree (((AB)C)D), as this is the only tree that displays
both triplets. This tree, however, implies a larger set of
triplets—both (AB)D and (BC)D as well as the two orig-
inal triplets—that are displayed on it. We can write that
(AB)C + (AC)D → (AB)D and (AB)C + (AC)D → (BC)D,
where the arrow stands for logical implication. These are
two examples of inference rules in which sets of triplets
logically imply another triplet. These rules, introduced
by Dekker (1986) and further analyzed by Bryant and
Steel (1995) (see also Wilkinson et al., 2004a, for a simple
introduction), lie at the heart of combining information
from different phylogenetic trees. While both of these
rules are dyadic in that they only involve inference from
pairs of triplets, it is known that irreducible rules of any
order exist (Bryant and Steel, 1995). Novel triplets not
implied by smaller sets can potentially be inferred from
sets of triplets of any size. By performing these inference
rules exhaustively, we could find all of the triplets jointly
implied by a set of supertree triplets, called the closure
of the set of triplets under the inference rules. This clo-
sure would thus identify all the relationships implied
by combinations of triplets from different input trees,
and so implied by combinations of the trees themselves.
The power of these inference rules is illustrated by the
fact that a phylogenetic tree on n taxa can be defined
by just n − 2 of the n(n−1)(n−2)

6 triplets it implies (Steel,
1992). In all but the simplest cases, it would not be fea-
sible to find the closure by enumerating and using the
rules directly—indeed, most higher-order rules remain
unknown, and there has been no systematic attempt to
enumerate them. In fact, this set is just those triplets
common to all the trees in the span of a set of triplets.
Given R, a set of compatible triplets, the closure of
R, is:

R =
⋂

A∈〈R〉
r (A)

Bryant and Steel (1995) present a polynomial-time al-
gorithm for finding this closure. For a rooted supertree S
the triplets in r (S)supp are a subset of r (S), they are all dis-
played by S, and so are compatible, so the closure r (S)supp
exists and can be found using this algorithm. This set is
then the set of triplets on supertree S that are supported
by any of the input trees alone or in combination, and so
identify which novel triplets in S are the sort of inferences
we might welcome and those we might not.

As well as identifying relationships supported (en-
tailed) by combinations of input trees, the closure de-
fined above has some helpful properties, all of which are
results of Bryant and Steel (1995). For any rooted tree T ,
the set r (T) is closed, and the intersection between any
two closed sets is also closed. The triplets supported by a
single input tree thus cannot imply any additional sup-
ported triplets and the triplets in r (S)supp − r (S)supp are
all implied by combinations of input trees. As r (S)supp ⊆
r (S), we know that r (S)supp ⊆ r (S), so that the closure will
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FIGURE 2. Trees from Gordon (1986). Upper values on nodes are the ratio of the number of triplets supporting the clade to the number
supporting the clade if all triplets from the tree were present. Lower values are S, the number of input trees supporting each clade (as defined by
Wilkinson et al., 2005b). The closure of this set contains all of the triplets on the supertree (i.e., each value would be 1.0 for the closure), showing
that the supertree is fully supported by the input trees—in fact, the input trees are compatible and the supertree is the strict consensus of their
span.

only contain triplets present in the supertree. Lastly, if
r (S)supp defines a supertree—i.e., the supertree is the only
tree that displays this set—then the span of these triplets
will consist of a single tree, and the closure will include
all of the triplets in the supertree so that the supertree is
fully supported.

Figure 2 shows an example of Gordon (1986), where
there is no conflict between the two input trees (see e.g.,
Wilkinson et al., 2005b). As shown in Figure 3, 187 out
of 348 supertree triplets are displayed by one or other
of the input trees, but all are supported when the in-
formation from the two input trees is combined using
the closure described above. The 161 triplets included
in the closed set but not supported by the two input
trees individually (Fig. 3) particularly add support for
the basal split between taxon 9 and the other taxa (Fig. 2),
as might be expected from examining the input trees—
input tree 1 shows that taxa 1 . . . 8 form a monophyletic
group excluding taxon 9, whereas input tree 2 places the
additional taxa 10 . . . 14 as part of this group. The in-
terpretation of all relationships in the supertree as be-
ing supported is consistent with that based on one of

the proposed clade-based measures (Wilkinson et al.,
2005b).

We should note that, although we consider a closure
operation on sets of triplets, trees can be broken down
in a number of different ways (see, e.g., Wilkinson, 1994)
and similar closures can be defined analogously on sets
of quartets (see Bryant and Steel, 1995) and on other
partial splits (Meacham, 1983, n-taxon statements) as
the sets of splits/quartets common to all members of
a span. There is no convenient algorithm for finding
either the full split closure or full quartet closure. Al-
though we have chosen to focus on rooted supertrees
and rooted input trees, quartet-based support measures
using the quartet closure operation would be more nat-
ural for the unrooted case. As most systematists are
more used to thinking about full splits than the lower-
order relationships like triplets and quartets, a closure
operation on partial splits seems likely to be of inter-
est. The only such closure for which a polynomial-time
algorithm is available is a dyadic split closure intro-
duced by Meacham (1983) and formalized by Semple
and Steel (2001). There are close links between these
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FIGURE 3. The example from Gordon (1986) showing triplets in
the two input trees (I1 and I2 are input trees 1 and 2, respectively) and
the supertree (S) shown in Figure 2. Numbers in the Venn diagram
are the numbers of triplets in each category, and in the closure of the
intersection sets with the supertree. In the absence of any conflict, the
intersection of the set of triplets from each input tree with the supertree
set defines the input tree, and so is closed.

different closure operations—informally, inference rules
on partitions can be reduced to those on quartets, and
inference rules on rooted splits can be reduced to triplet
rules. In fact, there is a particularly close link between the
dyadic split closure and a simpler closure operation on
quartets, called the semidyadic closure (see Huber et al.,
2005; Semple and Steel, 2003: pp 128–130), for which a
polynomial-time algorithm exists. This semidyadic clo-
sure is the closure under a subset of the inference rules
discussed above (in fact, under a single dyadic rule on
quartets), whereas the closure operation we discuss is the
rooted analogue of the full closure operation on quartets.
If we convert a set of triplets into quartets by adding
a shared outgroup taxon, this closure on quartets (and
the dyadic split closure) contains a proper subset of the
triplets in r (S)supp, and the triplet closure we use is thus

FIGURE 4. Only one triplet from the supertree is supported by the
input trees. The other (conflicting) triplets together imply (and so, to
one view, support) another triplet from the supertree. These two input
trees can thus be seen as together supporting part of the supertree
despite both conflicting with it.

more complete. If we restrict our attention to rooted trees
and triplets, we can use the most complete closure for
which a polynomial-time algorithm is available.

MEASURES OF TRIPLET SUPPORT

The sets r (S)supp and r (S)supp distinguish supported and
unsupported supertree triplets. Most biologists are more
used to interpreting measures of support for particu-
lar clades, which can be conveniently shown as values
next to particular branches in a tree diagram. Although
we focus on support for supertree triplets, the relation-
ship between triplet support and clade support is rel-
atively straightforward. Each clade on the supertree is
supported by those triplets it entails, whereas it is contra-
dicted by any triplet that conflicts with a triplet it entails.
A single triplet can thus contradict or support a number
of supertree clades but cannot both support and con-
tradict clades on a single tree. We can thus show triplet
support for particular supertree clades as the fraction of
triplets implied by a particular clade that are supported.
However, larger clades will imply many more triplets
than less-inclusive clades, so it may be harder to achieve
a certain level of support for such clades, and these sup-
port values might be expected to decrease towards the
root of a tree, as in Figure 2.

Although both the examples we have discussed show
support for all the supertree triplets (Figs. 1 and 2)
this is not always the case for MRP supertrees. Table 1
shows some examples of the number and proportion
of supported triplets in some empirical MRP supertrees
used as examples in previous work (Bininda-Emonds,
2003; Wilkinson et al., 2005b). It is notable that the clo-
sure operation identifies relatively few jointly entailed
triplets for these examples, because they have relatively
large numbers of input trees that already support the
majority of input tree triplets. For many other empirical
examples, the closure will be too complex to calculate
using existing algorithms. For example, in the data of
Kennedy and Page (2002) on 121 seabird species, 114,928
triplets are supported by trees individually out of 284,331
triplets on the entire MRP strict consensus tree, and com-
puting the closure of 114,928 triplets is currently imprac-
tical. Many published supertrees are considerably larger
than this. Faster algorithms for finding the closure would
help. The Bryant and Steel (1995) algorithm takes time

TABLE 1. Numbers and proportions of supported triplets for some
empirical supertrees. Lagomorpha example is the unweighted anal-
ysis from Stoner et al. (2003), others are from Bininda-Emonds et al.
(1999). QStree and mean V are component-based measures of support
defined in Bininda-Emonds et al. (1999) and Wilkinson et al. (2005b),
respectively.

|r (S)| |r (S)supp| |r (S)supp| |r (S)supp |
|r (S)|

|r (S)supp |
|r (S)| QStree mean V

Lagomorpha 79458 77852 77899 0.979 0.980 −0.104 0.340
Mustelidae 11753 11525 11699 0.981 0.995 −0.143 0.521
Canidae 5510 5382 5439 0.977 0.987 −0.146 0.259
Viverridae 5983 5972 5979 0.998 0.999 −0.045 0.253
Carnivora 220 220 220 1.0 1.0 −0.029 0.199
Felidae 7139 6807 7092 0.953 0.993 −0.219 0.022
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O(n5), where n is the number of triplets. We can improve
the running time somewhat by using the OneTree (Ng
and Wormald, 1996) algorithm (or the algorithm of Aho
et al., 1981 it is derived from) to reduce the number of
triplets we need to look at Thorley (2000): as the OneTree
tree will be a member of the span of the triplets we only
need to check if triplets in the OneTree are part of the
closure. Unfortunately, the OneTree is also the Adam’s
consensus of the span (theorem 2.10 of Bryant, 2003) and
can be very poorly resolved, so this does not improve the
worst-case running time of Bryant and Steel’s algorithm.
Better algorithms, based on ideas behind the OneTree al-
gorithm, are probably possible for this problem, but no
work has been done on this issue.

INFERRING TRIPLET SUPERTREES

Like previous measures, r (S)supp and r (S)supp are not
designed for use as objective functions for choosing be-
tween alternative supertrees as they focus on identifying
supported relationships rather than quantifying support.
Importantly, our measure ignores triplets shared by mul-
tiple input trees, giving them the same weight as triplets
that occur only singly. For example, there are two other
trees also fully supported by the input tree triplets shown
in Figure 1, with both ((AB)C)(DE)) and ((A(BC)(DE))
having all 10 of the 10 triplets from the input trees. The
supertree shown in the figure is optimal under the MRP
criterion because the six triplets relating A, B, and E to the
exclusion of C and D are repeated in the first two input
trees. The measures discussed above also fail to penal-
ize lack of resolution in a supertree, so that a tree with
just a single branch (and so a single clade) can score as
well as a fully resolved tree. These measures also make
no attempt to quantify the degree of conflict between a
supertree and input.

The act of decomposing input trees into sets of triplets
does, of course, suggest a number of natural triplet-based
criteria for choosing between supertrees, by finding the
largest set of compatible triplets from the input tree
triplet sets (counting triplets occurring in multiple input
trees multiple times). A supertree could then be found
using the (polynomial time) OneTree algorithm (Ng and
Wormald, 1996) on this set. There are problems with im-
plementing this idea. Although checking the compati-
bility of a set of triplets is possible in polynomial time,
identifying a maximal set of mutually compatible triplets
is NP-complete (Bryant, 1997:40; see Garey and Johnson,
1979, for a description of NP-completeness). Heuristic
methods can be used to search through tree space for
supertrees that display the largest compatible subset of
a set of triplets. This would be identical to using either
parsimony or compatibility to analyze a matrix encoding
triplets, an approach suggested several times in the su-
pertree literature (Nelson and Ladiges, 1994; Wilkinson
et al., 2001) and recently investigated by Wilkinson et al.
(2005a) as “triplet fit.” Such an approach appears to
have a number of desirable properties when compared
to some other MRP methods (Wilkinson et al., 2004b,
2005a). A different method would be to find the tree

matching the largest (or some maximal weighted) closed
set of input tree triplets, which will be considerably more
computationally intense given the slow algorithm avail-
able to compute the closure and is probably impractical.

THE MEANING OF “SUPPORTED” RELATIONSHIPS

What do we mean when we say a particular relation-
ship is “supported” by a particular tree? The set r (S)supp
contains all of the triplets that are entailed by the su-
pertree and at least one of the input trees, or by com-
binations of these triplets, and thus seems a natural set
of “supported” relationships. There are, however, other
supertree triplets that could be seen as supported by the
input trees that are not in this set. Triplets from differ-
ent input trees that conflict with the supertree can, in
combination, imply triplets that are displayed, so these
triplets together might be seen as supporting this par-
ticular supertree relationship, which is not a member
of r (S)supp (Fig. 4). We suggest that this kind of sup-
port is ignored because it emerges from combinations
of triplets that are rejected by the supertree under con-
sideration. Something similar happens if we attempt to
characterize conflict with the supertree using the closure
operation—relationships in the supertree will be sup-
ported and conflicted by various combinations of in-
put tree relationships, and every compatible subset of
input tree triplets will have its own closure implying dif-
ferent additional relationships.

The example of Figure 1 raises more fundamental
questions about what we mean by relationships being
supported. The split between AB and CDE in this su-
pertree is not supported by any input tree clades but
is fully supported by input tree triplets. In the sense of
Wilkinson et al. (2005b), this would be considered an un-
supported group, as it is contradicted by one of the input
trees, and seen as a problem of MRP analysis, but actu-
ally MRP is doing something rather desirable here. By
breaking up components as it maps them onto the opti-
mal tree, MRP is finding a tree that matches well on the
triplet level. Parsimony on the component matrix is, in
this example, acting like a compatibility (or parsimony)
analysis of triplets, but this property will not hold in gen-
eral. Compatibility on the component matrix does not
have this property, simply identifying the three resolu-
tions of the duplicated input tree as the different input
trees share no clades.

Our analysis of the support for supertree relationships
is based on decomposing both input trees and supertree
into triplets, allowing us to discriminate between sup-
port for supertree relationships that comes from combi-
nations of input trees and support from any individual
input tree. We show that this triplet-based view itself can
give a very different picture of the support for a rooted
supertree and that the additional combined support can
be particularly important. Together, these additional lev-
els of analysis bring into focus different concepts of sup-
port and conflict for phylogenetic hypotheses, and show
that more work is needed before we have a good under-
standing of how different supertree methods perform or
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of the properties we should expect of such methods. Our
examples at least show that there is no single correct view
of support for supertrees, just as there is no single correct
method for inferring supertrees in the first place.
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