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Eukaryotic genes of archaebacterial origin are more
important than the more numerous eubacterial genes,
irrespective of function
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The traditional tree of life shows eukaryotes as a distinct lineage
of living things, but many studies have suggested that the first
eukaryotic cells were chimeric, descended from both Eubacteria
(through the mitochondrion) and Archaebacteria. Eukaryote nuclei
thus contain genes of both eubacterial and archaebacterial origins,
and these genes have different functions within eukaryotic cells.
Here we report that archaebacterium-derived genes are signifi-
cantly more likely to be essential to yeast viability, are more highly
expressed, and are significantly more highly connected and more
central in the yeast protein interaction network. These findings
hold irrespective of whether the genes have an informational or
operational function, so that many features of eukaryotic genes
with prokaryotic homologs can be explained by their origin, rather
than their function. Taken together, our results show that genes of
archaebacterial origin are in some senses more important to yeast
metabolism than genes of eubacterial origin. This importance
reflects these genes’ origin as the ancestral nuclear component of
the eukaryotic genome.
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As one of the three domains of cellular life, the eukaryotes are
typically described as the sister group to the archaebacteria.

This sister group relationship describes the evolutionary history of
the “nuclear-cytoplasmic” component of eukaryotes, with mito-
chondria and plastids being of endosymbiotic bacterial origin
(e.g., ref. 1). In this traditional scenario, the unique features of
extant eukaryotes were gradually acquired in the eukaryote stem
group before the endosymbiotic acquisition of the mitochondrion.
Thus, the acquisition of the mitochondrion was an important, but
not foundational, step in eukaryote origins, occurring subsequent
to the evolution of many characteristic features of eukaryotic cell
biology. Early molecular phylogenies of ribosomal RNA genes
support this scenario (see refs. 2 and 3 for reviews), as do several
other molecular markers. Many nuclear genes are more closely
related to eubacterial homologs than to any known arch-
aebacterial sequence (4, 5) and appear to have been transferred
to the nucleus from the ancestral mitochondrial genome by
a process known as endosymbiotic gene transfer (1, 6). A similar
process occurred after other symbiotic events, for example, the
introduction of many chloroplast-derived genes into the nuclei of
green plants (6).
An alternative view of eukaryotic nuclear-cytoplasmic origins,

first suggested by Lake (7–9) is that this lineage arose from
within, rather than as a sister to, the archaebacteria. This view is
supported by molecular phylogenies showing that many eukary-
ote genes actually derive from within the archaebacterial domain
(7–11), including a recent reanalysis of informational genes with
modern phylogenetic methods (10). It also has become clear that
those eukaryotes that lack mitochondria either are derived
from organisms that have mitochondria or themselves host hydro-
genosomes or mitosomes, which are degenerate relicts of mito-
chondria (3, 12). Thus, all known eukaryotes possessed mitochondria

at some point in their evolutionary history, suggesting either that the
acquisition of the mitochondrion might have occurred early in
eukaryote evolution (or at least that the characteristic features of
extant eukaryotic cell biology arose after the initial mitochondrial
endosymbiosis) or that many important lineages of primitively
amitochondriate transitional “protoeukaryotes” have gone ex-
tinct. Various alternative scenarios have been proposed to explain
the chimeric (archaebacterial and eubacterial) nature of eukary-
otic genomes (3, 13, 14–16), some involving symbioses or “cell
fusions” quite different in character from what we call the tra-
ditional scenario (5, 14, 17). These ideas remain somewhat con-
troversial (18, 19), but appear to be supported by a growing body
of empirical evidence (12, 20).
However they arose, eukaryotic nuclei clearly contain homo-

logs to both eubacterial and archaebacterial genes, and a growing
number of phylogenetic studies confirm that nuclear genes are
derived from multiple sources (7, 12, 21, 22). Previous studies
(23, 24) confirm that about half of the eukaryotic genes have
homologs in prokaryotes, and that most of these homologs are
eubacterial. Furthermore, archaebacterial and eubacterial homo-
logs are known to fulfill broadly different functions in eukaryotic
cells, with eubacterial homologs largely involved in “operational”
metabolic processes and archaebacterial homologs largely in-
volved in the “informational” processes of transcription, trans-
lation, and replication (23, 25). These different functions sug-
gest that the different partners played different roles in the
formation of the earliest eukaryotic cell. Here we reveal other
fundamental differences between the contributions of the two
partner genomes.

Results
Our results are based on identifying prokaryote homologs of
eukaryotic genes, examining every gene in the Saccharomyces
cerevisiae genome. They support recent studies (23, 24) in
showing that many eukaryotic genes are related to prokaryotic
genes (2,460 of 6,704 genes), and that ∼75% of these have
eubacterial affinities. For 1,980 yeast genes, the strongest
BLAST hit is to a eubacterial gene, and for 480 yeast genes, the
strongest hit is archaebacterial; 952 genes have only eubacterial
homologs, showing no homology to any archaebacterial se-
quence, whereas 216 genes have only archaebacterial homologs.
We carried out a number of phylogenetic analyses of 1,717 of
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these gene families, with only the very largest families not sub-
jected to these analyses. The proportions of genes ascribed
eubacterial ancestry and archaebacterial ancestry remained
similar (see SI Results for details). These data confirm a signifi-
cant bias toward archaebacterial homology for genes with in-
formational functions [odds ratio (OR), 2.37; 95% confidence
interval (CI), 1.59–3.52]. Although significant, this is not a clear-
cut distinction, given that genes with archaebacterial homologs
are involved in most of the biological processes of the yeast cell.
These absolute numbers of homologs suggest a larger role for

genes with eubacterial homologs. Absolute numbers do not nec-
essarily tell the whole story, however, given that genes may differ
in function in many different ways, such as through different
patterns of expression and involvement in different metabolic
pathways. To explore this functional dimension, we mapped our
homologs onto data from a comprehensive gene knockout study
(26), identifying each gene as having either a lethal or a viable
deletion phenotype. Lethal genes are more than twice as likely to
have archaebacterial homologs than eubacterial homologs (OR,
2.23; 954% CI, 1.97–2.53). One possible explanation for this is that
the informational functions of genes with archaebacterial homol-
ogy are likely to be essential to cellular viability, and indeed in-
formational genes are more often lethal than operational genes
(OR, 2.98; 95% CI, 2.03–4.40). This does not explain our result,
however, because both informational and operational genes with
archaebacterial homologs are more likely to be lethal than those
with eubacterial homologs. Furthermore, the greater propensity to
lethality of archaebacterial genes is very similar across the two
categories (for informational genes, OR, 2.01; 95% CI, 0.92–4.41;
for operational genes, OR, 1.89; 95% CI, 1.43–2.47). Although the
relatively small number of informational genes means that we
cannot reject the null hypothesis of no association for this subset
of the data, we note that the estimated strength of this effect is
actually greater for informational genes than for operational
genes, confirming that the lack of significance is due to a lack of
power in the test for informational genes. Counts of genes in each
category are given in SI Results.
The foregoing results are robust to details of the data and

analysis, but we emphasize that these are large-scale patterns
rather than clear distinctions. Many archaebacterial homologs
have operational functions with both viable and lethal deletion
phenotypes, as do many informational eubacterial homologs.
Homology, function, and phenotype are also not strongly associ-
ated with the metabolic pathway in which the genes are involved
(Fig. 1 and Fig. S3). Most pathways contain both eubacterial and
archaebacterial homologs, and the distribution of these within
pathways shows no clear general pattern. Although we have not
attempted a large-scale analysis of metabolic pathway structure or
evolution, it is clear that some pathways (e.g., phospholipid and
sphingolipid metabolism) are largely eubacterial, some have
connected eubacterial and archaebacterial components (e.g.,
sterol synthesis), and others are a complex mixture of genes of
different homologies (e.g., tyrosine, tryptophan, and phenylala-
ninemetabolism). Three other example pathways are presented in
SI Materials and Methods.
In an effort to explain the greater essentiality of archaebacteria-

related genes, we examined other data that might shed light on
the differing cellular functions of these genes and their protein
products. Using data from RNAseq experiments (27), we found
significantly greater expression of genes with archaebacterial ho-
mologs (Table 1). The average number of tags that could be at-
tached to genes of archaebacterial origin was 164.64 (95% CI,
131.0–198.5), compared with 73.81 (95% CI, 61.03–86.46) for
eubacteria. This is a >2-fold difference on average. No significant
differences are seen between the expression levels of operational
and informational gene categories (Table S4).
Genes with archaebacterial homologs are more central and

more highly connected in the yeast protein interaction network

(28–30) (Fig. S4 and Table 1; see SI Materials and Methods for
details on data and methods), which has been shown to reflect
greater essentiality (29, 31). This difference is partly explained by
the greater centrality and connectedness of informational genes,
but a statistically significant difference is still observed for opera-
tional genes alone (Table S4). Furthermore, operational genes
whose products interact directly with the products of genes with
informational functions are more likely to have a lethal knockout
phenotype compared with other operational genes; however, be-
cause this effect is similar for both archaebacterial and eubacterial
homologs, the pattern of protein–protein interactions does not
explain our main result (SI Results).
Finally, eubacterial homologs show more duplicate copies

(paralogs) within the yeast genome, suggesting that a greater de-
gree of genetic redundancy is protecting the cell against deletion

A

B

Fig. 1. Distribution of homologs for yeast genes. Homologs are listed by
homology domain, functional category, and deletion phenotype. (A) Best-hit
domain. (B) Unambiguous hits, with homology only to one of the two
prokaryotic domains. Red bars represent lethal genes and blue bars repre-
sent viable genes in each domain. Note that the number of genes is plotted
on a log axis.
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of eubacterial homologs. Although there is a significant difference
in the number of duplicate copies between operational genes and
informational genes, the significant difference in the number of
duplicates between archaeal and eubacterial homologs is consis-
tent for both functional groups. However, unlike our other find-
ings, this result is sensitive to the dataset used (SI Results), and
other studies have found little evidence of a relationship between
duplication and redundancy (32), which may vary with the func-
tion and mode of duplication of the genes and even between
genomes (33).

Discussion
Genes of different origins play significantly different roles in
eukaryotic cells that cannot be explained by the functional (opera-
tional vs. informational) distinction between sets of genes. Genes of
archaebacterial origin and those of eubacterial origin differ signif-
icantly in many aspects, including essentiality, expression level, and
centrality in protein interaction networks. This complex pattern
suggests that this is a signal of the history of the yeast genome.
Our methods do not allow us to estimate the timing or exact

source of the genes that we identify as having homology to genes
from different prokaryotic domains. These genes could be found
in the yeast genome as a result of more recent lateral gene
transfer (LGT), rather than being a relict of mitochondrial en-
dosymbiosis. Both pre-eukaryogenesis LGT events among and
between groups of prokaryotes (34, 35) and LGT from either
group to eukaryotes (21) could have affected some of our data.
Although there are plenty of examples of prokaryote-to-eukaryote
LGT, there is limited evidence of LGT being an important mode
of genome evolution in most eukaryotes (36). Extensive inves-
tigation has found no conclusive evidence of prokaryotic genes
in the human genome, and there appears to be little evidence of
prokaryotic gene transfer into the yeast genome (37, 38), al-
though there may be methodological problems with these studies
(36). The statistically significant results of our analyses are even
more surprising in light of these processes. Although it seems
likely that recently acquired genes would occupy peripheral roles
in cellular metabolism or regulation, we know of no proposed
mechanism to explain the very different lethality of genes from
archaebacterial and eubacterial sources if recent LGT is respon-
sible for many of the prokaryotic homologs that we observe,
unless there is some systematic difference in the timing of LGT
from the two domains.
If most of the prokaryotic homologs that we observe are

descended from the fusion of a eubacterium and archaebacte-
rium to form the first eukaryotic cell, then our results can be
interpreted in terms of the different roles of the two ancestors. In
this scenario, genes from the archaebacterial host formed the
original eukaryote nucleus and so have been cointeracting for
a longer time and form a core part of metabolism. Incoming
eubacterial genes, from genome fusion or from subsequent en-
dosymbiotic gene transfer (our data cannot distinguish between
the two scenarios), have more peripheral roles in the network of
protein interactions that controls metabolism, because the
archaebacterial genes that performed essential functions might

have been more difficult to displace by the influx of eubacterial
genes. Although genes of eubacterial affinity seem to have
replaced large parts of this ancestral metabolism, our findings
suggest that much of eukaryotic metabolism may have been built
on an ancestral foundation that still plays a central role in the
eukaryotic cell. Our results also support other ideas about ge-
nome evolution. For instance, the complexity hypothesis proposes
that genes that encode proteins in large complexes are highly
connected and thus less likely to experience LGT (39). Our
findings add to the evidence indicating that the protein interaction
network of yeast shows significant historical structure (40), con-
firming that subsequent evolution has not completely erased the
effect of ancient evolutionary history on eukaryotic genomes.
Whatever the source of the prokaryote homologs that we have

identified, our results demonstrate that whereas eubacteria have
made a greater quantitative contribution to yeast metabolism,
the archaebacteria made a different, arguably more important
contribution. These results are compatible with previous findings
(12, 20) and with some ideas about the origin of the eukaryotic
cell (13, 41).
It is not clear that the historical process of eukaryogenesis should

be able to help us understand the biology of modern eukaryotic
cells, given that > 2.5 billion years (42) of evolution have shuffled
genes between pathways, changed expression levels, and altered
the interactions between gene products. For example, only half of
eukaryotic genes have an identifiable prokaryotic homolog, and no
large functional category consists solely of genes with homology to
a sole prokaryotic domain. Rapid genomic changes are likely to
have followed eukaryogenesis, as they did when genomes fused
more recently (43), so it is remarkable that some of the original
partners’ contributions might have persisted for > 1 billion years
of evolution.
Yeast metabolism, and presumably eukaryotic metabolism in

general, is a complex tapestry of prokaryotic threads and eukary-
otic innovations. Our analysis of the features of eukaryotic genes
that have a prokaryotic history shows that a protein’s group of
origin plays an important role in defining its expression profile,
likelihood of lethality, and position and connectivity in a protein
interaction network independent of the actual function of the
protein. This suggests that the roles of genes from the various
partners in the eukaryotic cell differ in ways beyond the simple
split between operational and informational functions.

Materials and Methods
Homology Search. To produce a homology search that would be both sensitive
and specific, we built a profile alignment of the amino acid sequence of
a range of eukaryotic homologs for each yeast gene, then used PSI-BLAST
(44) to search against a database of 197 eubacterial and 22 archaebacterial
genome sequences. To build the profile alignments for PSI-BLAST, each
protein-coding gene in the Saccharomyces cerevisiae genome sequence
[downloaded from the Cogent database (45)] was compared with the
protein-coding gene content of six other eukaryotic genomes (Caeno-
rhabditis elegans, Arabidopsis thaliana, Schizosaccharomyces pombe, Neu-
rospora crassa, Ashbya gossypii, and Trypanosoma cruzi) downloaded from
the same source. For each yeast gene, a multiple sequence alignment of the
yeast gene and the best (i.e., lowest e-value) hit with e < 0.001 from each of
these genomes was constructed using the alignment program MUSCLE (46)

Table 1. Functional correlates of prokaryote homology for yeast genes

Data Eubacterial Archaebacterial All P value (arch ≤ bact)

Expression level: number of tags 73.81 (61.03– 86.46) 164.64 (131.0–198.5) 85.89 (78.80–93.09) < 0.0001
Closeness centrality in interaction network 0.314 (0.312–0.316) 0.324 (0.321–0.327) 0.316 (0.315–0.317) < 0.0001
Degree in interaction network 15.91 (15.20–16.62) 20.90 (19.33–22.48) 18.02 (17.60–18.48) < 0.0001
Number of paralogs in yeast genome 13.13 (12.09–14.16) 8.02 (6.89–9.22) 7.58 (7.14–8.04) 1

Values are listed by domain of best BLAST hit, showing means and 95% bootstrap percentile CIs for the mean of each parameter (calculated using the
nonparametric bootstrap). P values are bootstrap probabilities for the mean of the statistic in archaebacterial homologs being less than or equal to the mean
in eubacterial homologs, based on 10,000 replicates.
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with default settings. This alignment, of between one and seven sequences
(depending on how many eukaryotic genomes had a hit with e < 0.001 for
the yeast gene) was used as a seed profile for a PSI-BLAST search against the
combined database of prokaryotic protein sequences, with an e-value cutoff
of 1 × 10−6. Genes were classified as homologs to the prokaryotic domains
in two different ways. In the least stringent case, genes were assigned to
whichever domain their best BLAST hit sequence belonged, being consid-
ered ambiguous only if they had equally good best hits in both domains
(Results and Fig. 1A). In the second case, genes were considered ambiguous
unless all BLAST hits with an e-value below the cutoff were in the
same domain.

Functional Comparisons. Comparisons of domain homology and knockout
phenotype, functional category, expression level, and interaction network
position were carried out using Perl scripts (available from the authors on
request). Genes annotated with Gene Ontology (GO) (47) terms “trans-
lation,” “transcription,” “DNA-dependent DNA replication” or any of their
subterms were considered informational; all other genes were considered
operational. Interaction network statistics were calculated using the Pajek
(48) package. GO mappings were downloaded from the Saccharomyces
Genome Database (49), RNAseq data were obtained from Nagalakshmi et al.

(27), knockout phenotype data were downloaded from the comprehensive
yeast genome database (50), and protein interaction data were obtained
from BioGRID (30).

Statistical Analysis. We describe the strength of associations between factors
using ORs (51); for example, the odds of being archaebacterial for in-
formational genes is calculated as the probability of an informational gene
having an archaebacterial homolog, divided by the probability of the gene
having a eubacterial homolog. We can similarly calculate the odds of being
archaebacterial for operational genes. The OR is the ratio of these two odds.
Thus, this statistic is not affected by the absolute sizes of the different cat-
egories. To test the significance of associations, we constructed a 95% CI for
the OR under a normal approximation to the log OR (51). A significant as-
sociation is one for which this CI does not overlap unity.
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SI Materials and Methods
Genes Showing Homology to a Single Domain. To confirm that our
results could not be affected by the best BLAST hit not being the
most closely related sequence, due to variable rates of evolution,
we performed the same analyses using only those genes that have
significant BLAST hits to either archaebacteria or eubacteria.
Because these genes show unambiguous homology to a single
domain, phylogenetic analysis would show ancestry only within
that domain. With these data, the OR for informational genes to
be archaebacterial versus operational genes to be archaebacterial
is 2.66 (95% CI, 1.60–4.40). Lethal genes are 2.13 times more
likely than viable genes to be archaebacterial (95% CI, 1.46–
3.12), and informational genes are 3.27 times more likely than
operational genes to be lethal (95% CI, 1.90–5.64). Within just
informational genes, lethal genes are 1.70 times more likely than
viable genes to be archaebacterial (95% CI, 0.589–4.86), and
within operational genes, they are 1.77 times more likely than
viable genes to be archaebacterial (95% CI, 1.15–2.73). There
are few informational genes with unambiguous BLAST hits to
a single domain (a total of 59), so the 95% CI for the OR within
this category is too wide for there to be a significant difference
between the two probabilities; nonetheless, the pattern of
greater lethality of archaebacterial genes compared with eubac-
terial genes is very similar in the two categories (OR, 1.70 for
informational and 1.77 for operational).
The only notable difference between the two datasets is that

archaebacterial genes show a higher mean number of duplicates
in the single-domain hit data, whereas the opposite was true in the
best-hit domain data. This is probably due to the effect of a few
genes with particularly large numbers of duplicates being only
weakly assigned as eubacterial. Repeating this analysis using me-
dian values rather than the mean, which has much lower statistical
power but is more robust to these extreme values, supports this
result for both datasets. Repeating our other tests using medians
supports our findings, although this test has insufficient power to
give significant P values for many of the comparisons (Table S3).

Phylogenetic Analysis. To check whether our BLAST-based results
are consistent with results from phylogenetic analysis, we designed
a phylogenetic analysis pipeline to test hypotheses of phylogenetic
relationships of particular yeast genes and their homologs in other
genomes. Building robust phylogenetic trees for individual genes
that diverged very anciently is difficult (1–3), and the large size of
may our trees (up to 2,009 taxa) also makes it difficult to correctly
identify optimal trees; any heuristic approach is likely to misplace
some taxa when working at this scale. Thus, we designed a pipe-
line that aims to make robust inference about the relationships by
attempting to identify which relationships each alignment could
significantly reject, rather than relying on correctly inferring
a single tree in any case. This hypothesis-testing approach should
be more robust than relying on a single tree topology, but still may
be sensitive to assumptions made in the substitution model. Al-
though we have tested alternative empirical substitution matrices
for every locus, we have not attempted to test the overall fit of any
model or to fit more complex heterogeneous models, which is
computationally impractical for such a large dataset.
We used RaxML version 7.0.4 (4) to perform both model

selection and maximum likelihood (ML) phylogenetic inference
for all 1,717 yeast ORFs for which we obtained significant hits
from more than one prokaryotic domain in our PSI-BLAST
search. For each ORF, an alignment of the yeast protein, any
eukaryotic seed sequences used in the PSI-BLAST search, and

all prokaryotic hits was generated using MUSCLE version 3.7
(5). For each alignment, we ran a pipeline that:

(i) Found the ML tree topology under the PROTCATWAG
model.

(ii) Calculated the likelihood for this tree under the PROTCAT
versions of all of the empirical AA substitution models
supported by RaxML (WAG, DAYHOFF, DCMUT,
JTT, MTREV, RTREV, CPREV, VT, BLOSUM62, and
MTMAM) both with and without invariant sites and empir-
ical base frequencies, both singly and together.

(iii) Found the best fitting of these models under the Akaike
information criterion, corrected for sample size, for sub-
sequent analysis.

(iv) Found the unconstrained ML tree under this optimal model
using the fast heuristic search algorithm of RaxML.

(v) Found ML trees under four different constraints:

Monophyly of eukaryotes
Reciprocal monophyly of eukaryotes, archaea, and eubacteria
Presence of (eukaryote + archaea) clade
Presence of (eukaryote + eubacteria) clade.

(vi) Tested whether any of these constraints can be rejected by
the data using the approximately unbiased (AU) test (6)
as implemented in Consel version 0.1i (7).

Note that the four constraints together allow us to test three
different possibilities for the relationships of each yeast locus. We
assume a priori that a gene for which eukaryote monophyly
cannot be rejected has a single origin in this domain. A gene for
which both constraints (ii) and (iii) can be rejected shows sig-
nificant support for a clade of eukaryote sequences nested within
the eubacterial radiation, whereas rejection of (ii) and (iv) sug-
gests that a eukaryotic clade is nested within an archaebacterial
radiation. Failure to reject hypothesis (ii) indicates that for this
gene, we cannot reject the traditional three-domain tree of life.
Trees rejecting both (iii) and (iv) must show a more complex
evolutionary history in which neither archaeabacterial nor eu-
bacterial sequences are monophyletic, indicative of lateral
transfer among prokaryotes.
Note that if none of the hypotheses can be rejected significantly,

it is likely to be because of a lack of statistical power.
Because of time constraints imposed by the computing facility

that we used, each alignment was run with a limit of 84 h of CPU
time to complete the pipeline; 1,247 of 1,717 jobs completed
within this time. As we expected, these were mainly the smaller
alignments in our dataset [median number of sequences, 159
(range, 8–1,329) in completed jobs vs. 692.5 (range, 95–2,009) in
uncompleted jobs].

SI Results
To identify the phylogenetic relationships of yeast genes as dis-
played on the ML tree under the best-fitting model from our
pipeline, we used a Perl script that identifies the smallest (i.e.,
least inclusive) cluster (or clan; ref. 8) on each tree that includes
the yeast gene and at least one prokaryotic sequence. These
prokaryotic sequences then form the closest noneukaryotic sister
group to the eukaryotic sequences under most possible rootings
of our unrooted gene trees. We then tested whether this cluster
included just archaebacterial sequences, just eubacterial se-
quences, or sequences from both domains, and whether this
cluster included all of the sequences from a particular domain
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that were present on the tree, indicative of a tree displaying the
three-domain relationship.
We found a total of 143 trees in which the yeast gene is mostly

closely related only to archaebacterial sequences, 717 trees
showing this relationship to only eubacterial sequences, 48 loci for
which the three-domain tree is most likely, and 283 loci in which
the closest sister group contains sequences from both prokaryotic
domains. These results are ambiguous, presumably indicating that
lateral gene transfer has influenced the phylogeny for this gene.
Comparing these results with our BLAST-based analysis, we find

that, of 620 genes assigned as eubacterial in the best-hit analysis
that we could analyze phylogenetically, in 25 cases the yeast gene
clustered instead with archaebacterial homologs, contradicting
the BLAST result, and an additional 17 showed the three-domain
tree. However, for genes identified by best-BLAST hit as arch-
aebacterial, a much higher proportion (114 out of 266) were
contradicted by theML tree, and 37 showed the three-domain tree.
Although these results underscore the difficulty of accurately

identifying the evolutionary relationships of individual genes, our
main results are robust to these differences (Table S2). When
using the phylogenetic results for assigning all of those genes
with homology to both domains, the OR for informational genes
to be archaebacterial versus operational genes to be arch-
aebacterial is 2.50 (95% CI, 2.22–2.81). Lethal genes are 2.91
times more likely than viable genes to be archaebacterial (95%
CI, 2.15–3.94), and informational genes are 2.57 times more
likely than operational genes to be lethal (95% CI, 1.65–4.01).
Within just informational genes, lethal genes are 2.65 times more
likely than viable genes to be archaebacterial (95% CI, 0.96–
7.29), and within operational genes they are 2.45 times more
likely than viable genes to be archaebacterial (95% CI, 1.74–
3.44). The results of all of these tests closely match those from
our best-hit data and indeed demonstrate the effect more strongly

than our BLAST analysis results in all cases except the increased
lethality of informational genes, which is slightly weaker in this
analysis (but still significant). These results suggest that the
BLAST approach is essentially reliable, but may be adding some
noise to our results.
We would caution against taking our phylogenetic results as any

kind of gold standard for assigning domain identity for the loci
that we have investigated, given that the relationships within our
ML trees are probably not entirely reliable and certainly are
rather poorly supported in many cases. This is emphasized by the
results of our AU tests for these data, which reveal that most of
the alignments that we analyzed lack the statistical power to
unambiguously assign the evolutionary origin of most eukaryotic
genes. For example, of a total of 1,247 analyzed alignments,
monophyly of the eukaryotic sequences was significantly rejected
in 189 (all AU tests are at an α level of P < 0.01). These align-
ments were removed from subsequent analyses, because any
inference about the origins of these genes would be ambiguous.
Of the remaining 1,058 alignments, 553 rejected the three-do-
main constraint, of which 25 also rejected a eubacterial affinity
for the eukaryotic sequences [constraint (iv) above], 154 rejected
an archaeal affinity for archaebacterial sequences [constraint
(iii)], 345 rejected both of these possibilities, and 29 rejected
neither possibility. Of the 1,058 alignments, 498 could not reject
the three-domain models, the vast majority of which (478) could
not reject any of the constraints, perhaps indicating a lack of
power for these loci. Of the remainder, 17 rejected only con-
straint (iii), and 3 rejected only constraint (iv).
In summary, our main findings are supported by our phylo-

genetic results, but our results underline the difficulty of accu-
rately and unambiguously reconstructing the sequence of evolu-
tionary events that occurred in the distant past.
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Fig. S1. Expression level, protein–protein interaction (closeness centrality in the interaction network), and number of yeast homologs. Each point is a single
yeast gene. Blue points represent genes with a viable deletion phenotype; red points, genes with a lethal deletion phenotype. Circles represent operational
genes; squares, informational genes. Filled points represent genes with eubacterial homology; open points, genes with archaebacterial homology, under the
best-hit criterion. Because closeness centrality and degree in the interaction network are correlated, only the closeness statistic is presented.
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Fig. S2. Expression level, protein–protein interaction (closeness centrality and degree in the interaction network) and number of yeast homologs per func-
tional category. Each point is the mean of the values for genes in a category with a particular deletion phenotype and with homology to a particular domain.
Blue points represent genes with a viable deletion phenotype, red points represent genes with a lethal deletion phenotype, filled circles represent genes with
eubacterial homology, and open circles represent genes with archaebacterial homologs under the best-hit criterion (A) and the single domain hit criterion (B).
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Fig. S3. Three metabolic pathways annotated with homology domain and knockout phenotype for genes in the pathway. The gray, rectangular boxes
represent major metabolites, with common cofactors and intermediates removed for clarity. Other boxes represent enzymes. Circular or ellipsoid boxes
represent enzymes encoded by genes with eubacterial homologs; diamond-shaped boxes, those encoded by genes with archaebacterial homologs. Octagonal
boxes show steps for which no gene is annotated in the model used. Red boxes represent genes with lethal knockout phenotype; blue boxes, viable knockout
phenotype; gray boxes, those for which this data are not available or are ambiguous because the different genes possibly encoding this activity vary in
phenotype. Pathways are from the iND750 model of yeast metabolism (9). Pathways shown are for threonine and lysine metabolism (A), pentose phosphate

Legend continued on following page
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metabolism (B), and arginine metabolism (C). Note that these examples contain both archaebacterial and eubacterial homologs showing both lethal and viable
deletion phenotypes, but that the proportions of these different categories reflect those found across the whole yeast genome. For example, two out of three
archaebacterial genes involved in threonine and lysine metabolism are lethal, whereas all eubacterial genes are viable, and both of these lethal genes are
aminoacyl-tRNA synthases, with informational functions. Only a single gene in the operational pentose phosphate pathway has archaebacterial homology, and
all genes in this pathway are viable or have an unknown deletion phenotype. Arginine metabolism contains examples of genes with both lethal and viable
phenotypes of both archaebacterial and bacterial homology, although it contains a greater proportion of genes with archaebacterial homology than is typical.

Fig. S4. The yeast protein–protein interaction network. Each vertex is a single Saccharomyces gene, with edges connecting genes whose protein products are
known to interact. Vertices are colored by the prokaryote domain of best BLAST-hit homology for each gene (blue for eubacteria, red for archaebacteria, green
for equal or nearly equally good hits to both domains, gray for genes showing no significant homology to either prokaryote domain).

20 40 60 80 100 120
number of eubacterial genomes sampled

nu
m

be
r o

f h
om

ol
og

s

20 40 60 80 100 120
number of eubacterial genomes sampled

nu
m

be
r o

f h
om

ol
og

s

0

500

1000

1500

2000

0

500

1000

1500

2000

(a)

(b)

Fig. S5. Testing the impact of taxonomic sampling. To test the sensitivity to the particular set of prokaryote genomes used, we repeated our BLAST ex-
periment on databases consisting of all 22 archaebacterial genomes used in our full dataset together with randomly chosen subsets of the 197 eubacterial
genomes of different sizes. We ran 10 replicates each with subsets of 5, 22 (equal to the archaebacterial count), 50, 75, 100, and 125 genomes. For each
replicate, we recorded the number of yeast genes showing homology to archaebacteria or eubacteria under our two different criteria, taking the domain of
the best BLAST hit and only counting genes that show homology to just one of the two prokaryote domains. This figure shows the results of this analysis. The
results suggest that the results are fairly consistent for any reasonably large (≥50) sample of eubacterial genomes, and thus the exact taxonomic sample chosen
is not critical. A corollary of this is that we would not expect our results to be significantly different if additional prokaryotic genomes were included in the full
dataset, so our conclusions should remain valid as, for example, more and more prokaryote genomes are sequenced and assembled. In particular, we note that
those genes identified as archaebacterial homologs are largely robust to taxonomic sampling as long as at least 22 eubacterial genomes are included, and are
almost entirely robust for samples of size ≥50. Eubacterial identity is slightly more labile but shows a similar pattern. These findings confirm that for any
samples of more than about 50 eubacterial genomes, and for most of the samples with only 22 eubacterial genomes, the difference between these results and
our results from the full dataset is much too small to alter the main result of the paper; for this, an ∼2-fold change in the numbers of genes assigned to
archaebacterial and eubacterial categories would be needed. The data including only those genes showing homology to a single prokaryotic domain are
particularly robust to taxonomic sampling.
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Table S1. Functional correlates for single domain hit data

Data type Eubacteria Archaebacteria All P value

Expression level: number of tags 79.51 (58.45–100.90) 172.21 (112.5–232.0) 85.89 (78.80–93.09) 5 × 10−4

Closeness centrality in interaction network 0.312 (0.310–0.315) 0.321 (0.317–0.326) 0.316 (0.315–0.317) 0.0007
Degree in interaction network 15.05 (14.17–15.98) 18.17 (16.05–20.18) 18.02 (17.60–18.48) 0.0039
Number of homologs in yeast genome 5.75 (5.02–6.54) 7.66 (6.69–8.73) 7.58 (7.14–8.04) 0.001

Values are means and 95% bootstrap percentile CIs for the mean of each parameter (calculated using the nonparametric bootstrap). P values are bootstrap
probabilities for the mean of the statistic in archaebacteria being less than or equal to the mean in eubacteria, based on 10,000 replicates.

Table S2. Genes showing archaebacterial and eubacterial homology, with lethal and viable deletion phenotypes, for both informational
and operational functional categories, for best-hit domain, for single-domain hit data, and for genes showing homology to both domains

Lethal deletion phenotype Viable deletion phenotype

Eubacteria Archaebacteria No hit Ambiguous Missing Eubacteria Archaebacteria No hit Ambiguous Missing

Best-hit domain
Informational genes 20 35 100 0 0 39 18 127 0 0
Operational genes 210 102 444 2 0 1,226 257 1,565 8 0
Unknown function 7 0 19 0 0 341 41 745 0 0
All genes* 237 137 630 2 0 1,610 316 2,912 8 2

Single-domain hit
Informational genes 11 18 100 26 0 19 11 127 27 0
Operational genes 89 37 444 188 0 595 118 1,565 778 0
Unknown function 0 0 19 7 0 164 15 745 203 0
All genes* 100 55 630 221 0 781 144 2,912 1,009 2

Genes showing homology to both domains
Informational genes 21 20 100 14 0 38 7 127 12 0
Operational genes 188 62 444 64 0 1,127 127 1,565 237 0
Unknown function 3 0 19 4 0 311 23 745 48 0
All genes* 212 82 630 827 0 1,480 157 2,912 297 2

“No hit” indicates genes that have no significant homology to any sequence in the prokaryotic genome data used here.
*All gene counts include genes for which no Gene Ontology data are available; thus, this row is not the sum of the rows above.

Table S3. Functional correlates for yeast genes, based on best-hit domain and single domain hit data, using medians
rather than means

Data type Eubacteria Archaebacteria All P value

Best-hit domain
Expression level: number of tags 27 (25.02–29.10) 41 (32.55, 48.46) 26 (24.63–26.77) <0.0001
Closeness centrality in interaction network 0.317 (0.315–0.319) 0.327 (0.325–0.330) 0.326 (0.311–0.318) <0.0001
Degree in interaction network 10 (9.38–11.42) 15 (12.65–17.41) 12 (11.50–13.46) <0.0001
Number of homologs in yeast genome 3 (2.88–3.11) 4 (3.43–4.93) 2 (2–2) 0.175
Single-domain hit data
Expression level: number of tags 28 (24.98–30.45) 47 (31.25–60.24) 26 (24.63–26.77) 0.0006
Closeness centrality in interaction network 0.315 (0.312–0.318) 0.326 (0.320–0.331) 0.326 (0.311–0.318) 0.0002
Degree in interaction network 9 (7.71–10.09) 13 (9.95–16.34) 12 (11.50–13.46) 0.0087
Number of homologs in yeast genome 2 (1.66–2.28) 5 (3.75–5.92) 2 (2–2) <0.0001

Values are medians and 95% bootstrap percentile CIs for the median of each parameter (calculated using the nonparametric
bootstrap). P values are bootstrap probabilities for the median of the statistic in archaebacteria being less than or equal to the median
in eubacteria, based on 10,000 replicates.
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Table S5. OR results

For all data
Test of informational/operational bias

Info. Oper.
Archaebacterial 53 359
Eubacterial 59 1436
P(arch|info) = 53/53+59 = 53/112
P(arch|oper) = 359/359+1436 = 359 /1795
OR = 2.366071
ASE = ASE (log odds) = sqrt (1/53 + 1/359 + 1/59 + 1/436) = 0.202228
Log OR = log(2.366071) = 0.8612308
95% CI = 0.8612308 + 1.96*0.202228 = 1.257598
0.8612308–1.96*0.202228 = 0.4648639
95% CI for OR (out of log space): 1.591798–3.51692
Test of archaebacterial lethality versus archaebacterial viable phenotype

Lethal Viable
Archaebacterial 137 316
Eubacterial 237 1610
P(arch|lethal) = 137/374
P(arch|viable) = 316/1926
OR = 2.232637; log OR = 0.8031834
ASE = ASE(log odds) = sqrt(1/137 + 1/316 + 1/237 + 1/1610) = 0.1237108
95% CI for log OR = 0.5607102–1.045657
95% CI for OR = 1.751916–2.845267
Test of lethality of informational genes versus lethality of operational genes

Info. Oper.
Lethal 55 312
Viable 57 1483
P(lethal|informational) = 55/112
P(lethal|operational) = 312/1795
OR = 2.979338; log OR = 1.091701
ASE = sqrt(1/55 + 1/57 + 1/312 + 1/1483) = 0.1990103
95% CI for log OR = 1.481761–0.7016408
95% CI for OR = 2.017060–4.400689
Test of lethality of archaebacterial genes versus lethality of eubacterial genes for informational
genes only

Lethal Viable
Arachaebacterial 35 18
Eubacterial 20 39
P(arch|lethal) = 35/55
P(arch|viable) = 18/57
OR = 2.015152; log OR = 0.7006944
ASE = sqrt(1/35 + 1/18 + 1/20 + 1/39) = 0.3997099
95% CI for log OR = 1.484126–0.082737
95% CI for OR = 0.9205932–4.411108
Test of lethality of archaebacterial genes versus lethality of eubacterial genes for operational genes
only

Lethal Viable
Archaebacterial 102 257
Eubacterial 210 1226
P(arch|lethal) = 102/312
P(arch|viable) = 257/1483
OR = 1.886486, log OR = 0.6347159
ASE = sqrt(1/102 + 1/210 + 1/257 + 1/1226) = 0.1388256
95% CI for log OR = 0.3626177,0.906814E
95% CI for OR = 1.437086,2.476420)
For informational hits data
Test of informational/operational bias

Info. Oper.
Archaebacterial 29 155
Eubacterial 30 684
P(arch|info) = 29/59
P(arch|oper) = 155/839
OR = 2.660580; log OR = 0.9785441
ASE = sqrt(1/29 + 1/155 + 1/30 + 1/684) = 0.2571903
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Table S5. Cont.

95% CI for log OR =0.4744511–1.482637
95% CI for OR = 1.607132–4.404545
Test of archaebacterial lethality versus archaebacterial viable phenotype

Lethal Viable
Arachaebacterial 55 129
Eubacterial 100 614
P(arch|lethal) = 55/184
P(arch|viable) = 100/714
OR = 2.134239; log OR = 0.7581102
ASE = sqrt(1/55 + 1/129 + 1/100 + 1/614) = 0.1938103
95% CI for log OR = 0.378242–1.137978
95% CI for OR = 1.459716–3.120454
Test of lethality of informational genes versus lethality of operational genes

Info. Oper.
Lethal 29 126
Viable 30 713
P(lethal|info) = 29/59
P(lethal|oper) = 126/839
OR = 3.272935; log OR = 1.185687
ASE = sqrt(1/29 + 1/30 + 1/126 + 1/713) = 0.2777681
95% CI for log OR = 0.6412615–1.730112
95% CI for OR = 1.898875–5.641288
Test of lethality of archaebacterial genes versus lethality of eubacterial genes for informational
genes only

Lethal Viable
Archaebacterial 18 11
Eubacterial 11 19
P(arch|lethal) = 18/29
P(arch|viable) = 11/30
OR = 1.69279; log OR = 0.526378
95% ASE = sqrt(1/18 + 1/11 + 1/11 + 1/19) = 0.5385214
95% CI for log OR = -0.5291239–1.58188
95% CI for OR = 0.5891208–4.864091
Test of lethality of archaebacterial genes versus lethality of eubacterial genes for operational genes
only

Lethal Viable
Archaebacterial 37 118
Eubacterial 89 595
P(arch|lethal) = 37/126
P(arch|viable) = 118/713
OR = 1.774348; log OR = 0.5734328
95% ASE = sqrt(1/37 + 1/118 + 1/89 + 1/595) = 0.2200414
95% CI for log OR = 0.1421517–1.004714
95% CI for OR = 1.152751–2.731126

Each calculation presents first the numbers of genes involved in the calculation as a 2 × 2 table. Then the two
probabilities (odds) are calculated separately. Then the OR is calculated, followed by the SE and 95% CI.

Table S6. Genes in each homology, function, and lethality category, with ORF names, gene
names, GO cellular process annotation, and descriptions from the Saccharomyces Genome
Database (SGD)

http://bioinf.nuim.ie/supplementary/CottonMcInerneyPNAS_2010/tableS5.pdf

An asterisk in the “GO cellular process” column indicates that there are multiple GO terms in this category
attached to this gene and we have reported the most commonly used term, as reported by the SGD. Shaded
rows are those genes that exhibited significant similarity to sequences to both prokaryotic domains. These are
genes that are present in the “best hit” data set but removed in the data set that is used for calculations based
on hits to only one of the two prokaryotic groups. This table can be downloaded from http://bioinf.nuim.ie/
supplementary/CottonMcInerneyPNAS_2010/tableS5.pdf.
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